1,680 research outputs found

    Variation in the predictability of lake plankton metric types

    Get PDF
    Statistical and climate models are frequently used for biodiversity projections under future climatic changes, but their predictive capacity for freshwater plankton may vary among different species and community metrics. Here, we used random forests to model plankton species and community metrics as a function of biological, climatic, physical, and chemical data from long-term (2000–2017) monitoring data collected from Lake Müggelsee Berlin, Germany. We (1) compared the predictability of well-known lake plankton metric types (biomass, abundance, taxonomic diversity, Shannon diversity, Simpson diversity, evenness, taxonomic distinctness, and taxonomic richness) and (2) assessed how the relative influence of different environmental drivers varies across lake plankton metric models. Overall, the metric predictability was highest for biomass and abundance followed by taxonomic richness. The biomass of dominant phytoplankton taxonomic groups such as cyanobacteria (adjusted-R2 = 0.53) and the abundance of dominant zooplankton taxonomic groups such as rotifers (adjusted-R2 = 0.59) and daphnids (adjusted-R2 = 0.51) were more predictable than other metric types. The plankton metric predictability increased when grouping phytoplankton species according to their functional traits (adjusted-R2 = 0.37 ± 0.14, mean ± SD, n = 36 functional groups) compared to higher taxonomic units (adjusted-R2 = 0.25 ± 0.15, n = 22 taxonomic groups). Light, nutrients, water temperature, and seasonality for phytoplankton and food resources for zooplankton were the main drivers of both taxonomic and functional groups, giving confidence that our models captured the expected major environmental drivers. Our quantitative analyses highlight the multidimensionality of lake planktonic responses to environmental drivers and have implications for our capacity to select appropriate metrics for forecasting the future of lake ecosystems under global change scenarios

    A long-term case study of a large sub-Alpine lake

    Get PDF
    Availability of remotely sensed multi-spectral images since the 1980’s, which cover three decades of voluminous data could help researchers to study the changing dynamics of bio-physical characteristics of land and water. In this study, we introduce a new methodology to develop homogenised Lake Surface Water Temperature (LSWT) from multiple polar orbiting satellites. Precisely, we developed homogenised 1 km daily LSWT maps covering the last 30 years (1986 to 2015) combining data from 13 satellites. We used a split-window technique to derive LSWT from brightness temperatures and a modified diurnal temperature cycle model to homogenise data which were acquired between 8:00 to 17:00 UTC. Gaps in the temporal LSWT data due to the presence of clouds were filled by applying Harmonic ANalysis of Time Series (HANTS). The satellite derived LSWT maps were validated based on long-term monthly in-situ bulk temperature measurements in Lake Garda, the largest lake in Italy. We found the satellite derived homogenised LSWT being significantly correlated to in-situ data. The new LSWT time series showed a significant annual rate of increase of 0.020 °C yr−1 (*P < 0.05), and of 0.036 °C yr−1 (***P < 0.001) during summer

    Effects of water temperature on summer periphyton biomass in shallow lakes: a pan-European mesocosm experiment

    Get PDF
    Periphyton communities play an important role in shallow lakes and are controlled by direct forces such as temperature, light, nutrients, and invertebrate grazing, but also indirectly by planktivorous fish predation. We performed a pan-European lake mesocosm experiment on periphyton colonization covering five countries along a north/south geographical/temperature gradient (Estonia, Germany, Czech Republic, Turkey, and Greece). Periphyton biomass on artificial polypropylene strips exposed at 50 cm water depth at low and high nutrient regimes (with mean total phosphorus concentration of 20 and 65 µg L−1, respectively) was compared during mid-summer. No significant effect of nutrient loading on periphyton biomass was observed as nutrient concentrations in the mesocosms were generally above limiting values. Water temperature significantly enhanced summer periphyton biomass development. Additionally, direct and indirect top-down control of snails and fish emerged as a significant factor in periphyton biomass control

    Influence of examiner's clinical experience on the reproducibility and accuracy of radiographic examination in detecting occlusal caries

    Get PDF
    The aim of this in vitro study was to assess the influence of varying examiner's clinical experience on the reproducibility and accuracy of radiographic examination for occlusal caries detection. Standardized bitewing radiographs were obtained from 166 permanent molars. Radiographic examination was performed by final-year dental students from two universities (A, n = 5; B, n = 5) and by dentists with 5 to 7years of experience who work in two different countries (C, n = 5; D, n = 5). All examinations were repeated after 1-week interval. The teeth were histologically prepared and assessed for caries extension. For intraexaminer reproducibility, the unweighted kappa values were: A (0.11-0.40), B (0.12-0.33), C (0.47-0.58), and D (0.42-0.71). Interexaminer reproducibility statistics were computed based on means ± SD of unweighted kappa values: A (0.07 ± 0.05), B (0.12 ± 0.09), C (0.24 ± 0.08), and D (0.33 ± 0.10). Sensitivity, specificity, and accuracy were calculated at D1 and D3 thresholds and compared by performing McNemar test (p = 0.05). D1 sensitivity ranged between 0.29 and 0.75 and specificity between 0.24 and 0.85. D3 specificity was moderate to high (between 0.62 and 0.95) for all groups, with statistically significant difference between the dentists groups (C and D). Sensitivity was low to moderate (between 0.21 and 0.57) with statistically significant difference for groups B and D. Accuracy was similar for all groups (0.55). Spearman's correlations were: A (0.12), B (0.24), C (0.30), and D (0.38). In conclusion, the reproducibility of radiographic examination was influenced by the examiner's clinical experience, training, and dental education as well as the accuracy in detecting occlusal carie

    Relationship between DIAGNOdent values and sealant penetration depth on occlusal fissures

    Get PDF
    The aim of this in vitro study was to evaluate the relationship between laser fluorescence values and sealant penetration depth on occlusal fissures. One hundred and sixty-six permanent molars were selected and divided into four groups, which were each treated using a different sealant (two clear and two opaque). The teeth were independently measured twice by two experienced dentists using two laser fluorescence devices—DIAGNOdent (LF and LFpen)—before and after sealing, and then thermoclycled. After measuring, the teeth were histologically prepared and assessed for caries extension. Digital photographs of the cut sealed sites were assessed, and the sealant penetration depth was measured. All 166 sites were measured by one of the examiners taking as limits the outer and inner surface of the sealant into the fissure. For each device (LF and LFpen) and each group, the difference between the values at baseline and after sealing was plotted against the sealant penetration depth and scatter plots were provided. It could be observed that most of the points were concentrated around the zero line, for both LF and LFpen in the four groups. In conclusion, there is no relation between changes in DIAGNOdent values and increasing of depth sealant penetration within the occlusal fissure

    Effects of trophic status, water level, and temperature on shallow lake metabolism and metabolic balance: A standardized pan‐European mesocosm experiment

    Get PDF
    Important drivers of gross primary production (GPP) and ecosystem respiration (ER) in lakes are temperature, nutrients, and light availability, which are predicted to be affected by climate change. Little is known about how these three factors jointly influence shallow lakes metabolism and metabolic status as net heterotrophic or autotrophic. We conducted a pan‐European standardized mesocosm experiment covering a temperature gradient from Sweden to Greece to test the differential temperature sensitivity of GPP and ER at two nutrient levels (mesotrophic or eutrophic) crossed with two water levels (1 m and 2 m) to simulate different light regimes. The findings from our experiment were compared with predictions made according the metabolic theory of ecology (MTE). GPP and ER were significantly higher in eutrophic mesocosms than in mesotrophic ones, and in shallow mesocosms compared to deep ones, while nutrient status and depth did not interact. The estimated temperature gains for ER of ~ 0.62 eV were comparable with those predicted by MTE. Temperature sensitivity for GPP was slightly higher than expected ~ 0.54 eV, but when corrected for daylight length, it was more consistent with predictions from MTE ~ 0.31 eV. The threshold temperature for the switch from autotrophy to heterotrophy was lower under mesotrophic (~ 11°C) than eutrophic conditions (~ 20°C). Therefore, despite a lack of significant temperature‐treatment interactions in driving metabolism, the mesocosm's nutrient level proved to be crucial for how much warming a system can tolerate before it switches from net autotrophy to net heterotrophy

    Numerical framework and performance of the new multiple-phase cloud microphysics scheme in RegCM4.5: precipitation, cloud microphysics, and cloud radiative effects

    Get PDF
    Abstract. We implement and evaluate a new parameterization scheme for stratiform cloud microphysics and precipitation within regional climate model RegCM4. This new parameterization is based on a multiple-phase one-moment cloud microphysics scheme built upon the implicit numerical framework recently developed and implemented in the ECMWF operational forecasting model. The parameterization solves five prognostic equations for water vapour, cloud liquid water, rain, cloud ice, and snow mixing ratios. Compared to the pre-existing scheme, it allows a proper treatment of mixed-phase clouds and a more physically realistic representation of cloud microphysics and precipitation. Various fields from a 10-year long integration of RegCM4 run in tropical band mode with the new scheme are compared with their counterparts using the previous cloud scheme and are evaluated against satellite observations. In addition, an assessment using the Cloud Feedback Model Intercomparison Project (CFMIP) Observational Simulator Package (COSP) for a 1-year sub-period provides additional information for evaluating the cloud optical properties against satellite data. The new microphysics parameterization yields an improved simulation of cloud fields, and in particular it removes the overestimation of upper level cloud characteristics of the previous scheme, increasing the agreement with observations and leading to an amelioration of a long-standing problem in the RegCM system. The vertical cloud profile produced by the new scheme leads to a considerably improvement of the representation of the longwave and shortwave components of the cloud radiative forcing

    Timing matters: Sampling frequency for early-warning indicators across food web components in a virtual lake

    Get PDF
    Shallow lakes are known for sudden shifts between a desired clear and an undesired turbid state despite only incremental changes in the underlying drivers. Such sudden shifts are a major challenge for lake managers who can be confronted with abrupt losses of desired ecosystem services without easily observable warning signals. Predictive tools for the loss of ecosystem resilience are vital to respond with timely mitigation measures and avert a shift to the undesired state. Early-warning indicators (EWIs) have faithfully preceded critical transitions in minimal models but have proven more elusive in real-world data, suggesting a mismatch between measurement strategy and the detectability of EWIs. Here, we capitalize on data simulated using the aquatic ecosystem model PCLake+ which represents real systems more closely than reductionistic models and which allows the generation of critical transitions in response to gradual changes in phosphorus load. We tested the effect of different sampling intervals (daily to yearly) on the detection of three often-used EWIs across a range of food web and nutrient-related variables. Moreover, we included one integrated sampling interval (yearly average of daily measurements) to represent time-integrated measurements. EWIs generally performed better at shorter intervals (daily, weekly) but integrated measurements over the year also proved suitable to detect oncoming state shifts. We propose that lake managers should aim for high-frequency measurements of variables that can be easily and cheaply measured (e.g. oxygen, Secchi) or, alternatively, focus on integrated approaches using passive samplers or sedimented material

    Synchronous dynamics of zooplankton competitors prevail in temperate lake ecosystems

    Get PDF
    Although competing species are expected to exhibit compensatory dynamics (negative temporal covariation), empirical work has demonstrated that competitive communities often exhibit synchronous dynamics (positive temporal covariation). This has led to the suggestion that environmental forcing dominates species dynamics; however, synchronous and compensatory dynamics may appear at different length scales and/or at different times, making it challenging to identify their relative importance. We compiled 58 long-term datasets of zooplankton abundance in north-temperate and sub-tropical lakes and used wavelet analysis to quantify general patterns in the times and scales at which synchronous/compensatory dynamics dominated zooplankton communities in different regions and across the entire dataset. Synchronous dynamics were far more prevalent at all scales and times and were ubiquitous at the annual scale. Although we found compensatory dynamics in approximately 14% of all combinations of time period/scale/lake, there were no consistent scales or time periods during which compensatory dynamics were apparent across different regions. Our results suggest that the processes driving compensatory dynamics may be local in their extent, while those generating synchronous dynamics operate at much larger scales. This highlights an important gap in our understanding of the interaction between environmental and biotic forces that structure communities
    corecore