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A B S T R A C T   

Shallow lakes are known for sudden shifts between a desired clear and an undesired turbid state despite only 
incremental changes in the underlying drivers. Such sudden shifts are a major challenge for lake managers who 
can be confronted with abrupt losses of desired ecosystem services without easily observable warning signals. 
Predictive tools for the loss of ecosystem resilience are vital to respond with timely mitigation measures and avert 
a shift to the undesired state. Early-warning indicators (EWIs) have faithfully preceded critical transitions in 
minimal models but have proven more elusive in real-world data, suggesting a mismatch between measurement 
strategy and the detectability of EWIs. Here, we capitalize on data simulated using the aquatic ecosystem model 
PCLake+ which represents real systems more closely than reductionistic models and which allows the generation 
of critical transitions in response to gradual changes in phosphorus load. We tested the effect of different sam-
pling intervals (daily to yearly) on the detection of three often-used EWIs across a range of food web and 
nutrient-related variables. Moreover, we included one integrated sampling interval (yearly average of daily 
measurements) to represent time-integrated measurements. EWIs generally performed better at shorter intervals 
(daily, weekly) but integrated measurements over the year also proved suitable to detect oncoming state shifts. 
We propose that lake managers should aim for high-frequency measurements of variables that can be easily and 
cheaply measured (e.g. oxygen, Secchi) or, alternatively, focus on integrated approaches using passive samplers 
or sedimented material.   

1. Introduction 

Our planet is experiencing far-reaching emergencies, such as envi-
ronmental degradation, disease outbreaks or droughts (Ripple et al., 
2017). Many of earth’s environmental and societal systems are stabi-
lized by internal positive feedback processes (Scheffer, 2009).The 
theoretical expectation is that once a pressure exceeds a critical 
threshold, such complex systems can suddenly shift to an alternative 
stable state stabilized by a new set of feedback processes (May, 1977; 
Scheffer et al., 2001). Against the backdrop of climate change and 
land-use intensification, this new state is generally unfavourable, 
resulting in catastrophic loss of biodiversity, health or economic value 
(Scheffer et al., 2009; Janssen et al., 2021). Such sudden shifts to an 
alternative stable state are notoriously difficult to predict as there is little 
overt change in ecosystem state variables despite climate and land use 

change gradually undermining the resilience of these systems (Scheffer 
et al., 2009). Hence, reliable indicators for deteriorating ecosystem 
resilience are sought after to help preventative management taking 
timely countermeasures to avert an upcoming crisis. Early-warning in-
dicators (EWIs) have been proposed as robust and relatively generic 
indicators of ecosystem resilience (Dakos et al., 2012; Van Nes and 
Scheffer, 2007). 

Lake ecosystems have served as exemplative case studies to develop 
the theory of alternative stable states and associated EWIs that allow the 
prediction of an approaching regime shift. Shallow lakes are known for 
sudden shifts between a clear, macrophyte dominated regime and a 
turbid, phytoplankton dominated regime (Scheffer and Jeppesen, 2007; 
Scheffer and Carpenter, 2003). These sudden shifts can be caused by 
several mechanisms, e.g., by linear tracking of large changes in a key 
driver, by a non-linear but continuous response to a driver exceeding a 
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threshold, or, in the case of systems with more than one stable state, by a 
non-linear and discontinuous response to gradual changes in a driver 
generating a critical transition to an alternative stable state (Andersen 
et al., 2009). In the last case, the shift is not easily reversible as the new 
state is stabilised by its own set of positive feedbacks, and therefore a 
return to the original state requires a reduction of the driver beyond the 
initial threshold (i.e., hysteresis) (Beisner et al., 2003). In shallow lakes, 
various ecological mechanisms have been shown to generate critical 
transitions between alternative states (Scheffer, 2009), including (i) 
changes in the competitive ability of two or more species due to changes 
in e.g., nutrient load (May, 1977; Collie et al., 2004); (ii) trophic cas-
cades triggered by in- or exclusion of top predators (Carpenter et al., 
2001) and parasites (Gerla et al., 2013); and (iii) occurrence of intra-
guild predation by resource competitors that also prey on each other 
(Verdy and Amarasekare, 2010; Scharfenberger et al., 2013).In shallow 
lakes, critical transitions driven by increasing nutrient load result in 
increased phytoplankton biomass, thereby decreasing the light avail-
ability for the submerged vegetation and hampering vegetation growth 
(Scheffer et al., 1993). The subsequent loss of vegetation increases 
turbidity as the sediment is no longer stabilised and sheltered from 
wind-induced resuspension (James et al., 2004; Vermaat et al., 2000). 
Moreover, loss of vegetation releases phytoplankton from grazing 
pressure as shelter for zooplankton becomes scarce (Timms and Moss, 
1984) and from suppression by allochemicals excreted from submerged 
vegetation (Hilt and Gross, 2008). All these processes contribute to a 
feedback cycle stabilizing the turbid state (van Donk and Gulati, 1995); 
Ibelings et al., 2007). Conversely, with decreasing nutrient load, rooted 
submerged vegetation stabilises the sediment and provides shelter for 
zooplankton, thereby increasing the grazing pressure on phytoplankton 
and subsequently, light availability in the water column, which 
contribute to the feedback cycle stabilizing the clear state (see also ex-
amples in Scheffer and Jeppesen, 2007; Jeppesen et al., 2012) . As each 
state (clear or turbid) is stabilized by its own feedback cycle, the tipping 
point under increasing nutrient loads (eutrophication) differs from that 
under decreasing nutrient loads (oligotrophication), leading to hyster-
esis (Scheffer et al., 1993). EWIs are based on trends in statistical output 
that assess the loss of temporal or spatial resilience of a system before a 
critical transition occurs (Dakos et al., 2012). Some EWIs are linked to 
critical slowing down, which is characterised by an increased recovery 
time after a minor perturbation as the system approaches its tipping 
point (Ives, 1995; Van Nes and Scheffer, 2007). If a system shows critical 
slowing down, it tends to become more similar to its own past, resulting 
in an increasing trend in autocorrelation at lag-1 (AR1) (Ives, 1995). 
This increase in short-term memory and lack of decay of the impact of 
past perturbations also leads to a build-up in variance, measured as an 
increasing trend in the standard deviation (SD) (Carpenter and Brock, 
2006). A concurrent increase in SD and AR1 in a time series means 
higher variability in low-frequency processes compared to high- 
frequency processes in the power spectrum of a time series, which can 
be quantified as increasing density ratio (DR) of variance at low to high 
frequencies (Biggs et al., 2009). 

While EWIs reliably precede critical transitions in reductionistic, 
minimal models, their detection in real-world systems has proven more 
elusive (Burthe et al., 2016; Gsell et al., 2016; Spears et al., 2016; 
Gilarranz et al., 2022). Real-world systems experience multiple 
ecological processes simultaneously, affecting typical indicator vari-
ables differently, adding noise and thereby potentially cloaking EWIs 
(Perretti and Munch, 2012). Moreover, EWIs are typically assessed on a 
limited set of ecosystem variables, partly for pragmatic reasons 
(choosing variables that can be measured cost-effectively, easily and 
reliably) and partly due to lack of insight about which variables are most 
relevant as input data for the calculation of EWIs. Furthermore, sam-
pling frequency in water management is often dictated by the avail-
ability of financial resources or time, hence traditional sampling 
schemes may not be of optimal frequency and duration for robust 
detection of EWIs (Batt et al., 2019; Spears et al., 2017). In combination, 

the choice of ecosystem variables to measure and the frequency of these 
measurements both influence the detection of EWIs. Insufficient insights 
into the effect of these choices leave lake managers without adequate 
tools to assess the ecological stability of their systems and respond in 
time to avert the occurrence of a potential regime shift (Pace et al., 
2017). Mechanistic ecosystem-level models can help to bridge the gap 
between EWI theory developed with reductionistic minimal models and 
real-world complex natural systems. 

Mechanistic lake ecosystem models, such as PCLake+, can generate 
large amounts of virtual data for lakes with a variety of settings (Janssen 
et al., 2019a). When such a model is well-grounded in reality and has 
proven applicability to real-world lake data, it can serve as a form of a 
virtual reality object (Kuiper et al., 2015). Such a virtual lake can be set 
up to represent idealized conditions for alternate stable states to occur 
and EWIs to be found. Moreover, the virtual lake can be sampled ad 
libitum at no cost across ecological components and time scales. Hence, 
such an approach can help to generate hypotheses regarding both 
sampling frequency and ideal variables to look for EWIs. In our study, 
we make use of the ecosystem model PCLake+ which has a long history 
of providing real-world management solutions (Janse and van Liere, 
1995), has been shown to be able to produce critical transitions (Janse 
et al., 2008; Janssen et al., 2019a) and EWIs (Gsell et al., 2016) and has 
been previously employed successfully as a virtual lake to sample from 
for methodological comparison (Kuiper et al., 2015; Janssen et al., 
2019b). We set up the model with a set of lake characteristics that are 
expected to produce a critical transition from a turbid to a clear state and 
vice-versa along a long gradient of nutrient loading. Using this virtual 
lake approach, we aim to improve understanding of the importance of 
sampling frequency and what ecosystem components (i.e., physical and 
chemical variables, food web components) are most suitable for EWI 
detection. 

With gradual changes in nutrient load as an underlying driver, the 
regime shifts in our PCLake + scenarios are caused by competition be-
tween phytoplankton and submerged vegetation; hence we expect to 
detect EWIs in phytoplankton related variables (e.g. chlorophyll-a, 
phytoplankton biomasses) with increasing (eutrophication) as well as 
decreasing nutrient loading (oligotrophication). These signals may 
resonate through other ecosystem components, allowing for the detec-
tion of EWI’s in variables that have no direct mechanistic link to the 
driver of the regime shift but that absorb signals through the food web 
(e.g., zooplankton, fish, sediment nutrient content). We further hy-
pothesize that with a high sampling frequency, the probability of EWI 
detection will be the highest in all components of the ecosystem. As 
sampling frequency decreases, the potential for EWI detection de-
teriorates, especially when important ecological process rates and 
sample frequency do not match (e.g., generation times of days with a 
sampling frequency of months). 

2. Material and methods 

To test our hypotheses, we ran PCLake+ for 50-year long eutrophi-
cation and oligotrophication scenarios and extracted the time series of 
all model state variables that pertain to inorganic nutrient stocks dis-
solved in the upper water column and in the sediment pore water as well 
as nutrient stocks locked in biomasses of food web components spanning 
primary producers, zooplankton and zoobenthos as well as omnivorous 
and predatory fish (see also Fig. 1 for an overview of variables and their 
connections). To evaluate the effect of sampling frequency and inte-
gration over time, we calculated three commonly used EWIs (AR1, SD 
and DR) on the residuals of the seasonally adjusted and detrended time 
series filtered at regular intervals to reflect relevant sampling fre-
quencies that lake managers are likely to use (daily, weekly, monthly, 
quarterly, half-yearly and yearly) or integrated per year to reflect sam-
pling strategies such as passive samplers or possibly paleolimnological 
approaches (yearly-integrated). 
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2.1. PCLake+ runs 

PCLake+ is an aquatic ecosystem model used to simulate food web 
dynamics in lakes (Janssen et al., 2019a) which is an extension of 
PCLake which was developed, parameterised and empirically validated 
for 43 European shallow lakes (Janse et al., 2010). The extended version 
PCLake+ can also model deep lakes (Janssen et al., 2019a) and includes 
floating and denitrifying cyanobacteria (Chang et al., 2020). For our 
simulations we made use of the default shallow lake settings of 
PCLake+. A default lake is configured with an average depth of 2 m, 
1000 m fetch, and with varying water temperature (average 15 ◦C, 

±10 ◦C), evaporation and light curves based on sine wave functions 
reflecting Dutch weather conditions (for further details on lake defini-
tion and PCLake+ set up, see link to script in the data statement). The 
lake receives a constant inflow of water of 20 mm per day. Our virtual 
lake, with the given settings, constitutes a temperate, relatively small, 
shallow lake. We used PCLake+ to simulate a default lake going through 
a critical transition from either clear to turbid (eutrophication) or turbid 
to clear (oligotrophication). We simulated these critical transitions by 
respectively linearly increasing (from 0.00001 to 0.008 gP m− 2 d-1) or 
decreasing (0.008 to 0.00001 gP m− 2 d-1) the phosphorus load over a 
period of 50 years and a constant N:P ratio of 10. Prior to the simulation, 
we allowed the model to run to equilibrium (spin-off time of 50 years) as 
a start position for the initial states of the final runs. We aimed at 
assessing EWIs in the PCLake+ output as a result of daily weather var-
iations as perturbations. To simulate weather variation, we added sto-
chasticity in form of random fluctuations (Brownian motion) with a 
predetermined error distribution to the temperature function in 
PClake+ using the “Dwiener” function available in Matlab (Siegert and 
Friedrich, 2001): 

Tw(d) = [Tw − T ’cos(2π(d − l) ) ] + α*dwiener(β)

where Tw(d) is the water temperature (◦C) as a function of the day in the 
year d, Tw the yearly average water temperature of 15 ◦C, T’ the 
maximum water temperature variation of 10 ◦C, l the time lag compared 
with the atmospheric maximum temperature of 30 days and α and β the 
stochasticity parameters which are 0.5 (weight factor) for α and 1 
(standard deviation of noise) for β. We obtained daily output for all state 
variables for further EWIs analysis. 

2.2. Breakpoint detection and EWI analysis 

For the breakpoint and EWI analysis of the daily time series each 
variable simulated with PCLake+ was z-scored (mean-centred and 
divided by the standard deviation) and decomposed in seasonal, trend 
and residual components using a LOESS filter (function “stl” in R (R Core 
Team, 2018) Fig. 2). The breakpoint date was calculated on the trend 
component using two methods, detection of structural change in the 
time series based on F-statistics (Zeileis et al., 2001); R package struc-
change)) and identification of absolute maximum in first-differenced 
time series. Visual inspection of the breakpoint results revealed four 
cases in which the breakpoints were in linear sections of the time series 
(eutrophication: Zooplankton dry weight (oDZooEpi) and P in dissolved 
PO4 sediment pore water (sPO4S); oligotrophication: N in dissolved NO3 
(oNO3WEpi) and P in dissolved PO4 (oPO4WEpi)). Hence, we calculated 
the median and standard deviation of all breakpoints per scenario 
(eutrophication or oligotrophication) and reanalysed the four outliers 
with the median as a breakpoint. Three commonly used EWIs (auto-
correlation at lag-1 (AR1), standard deviation (SD) and density ratio of 
the power spectrum (DR)) were calculated on the time series of the re-
siduals (i.e., the z-scored time series - seasonal component - trend 
component) using the last 10 years before the shift (Fig. 2). Early- 
warning indicators are expressed as trends in AR1, SD and DR within 
rolling windows along the residuals time series using a non-parametric 
Kendall tau correlation (R package “earlywarnings”, (Dakos et al., 

Fig. 1. Visualization of state variables and their interaction pathways in PCLake (Janse et al., 2008) modified from (Van Gerven et al., 2015). Boxes denote biomass 
compartments, arrows indicate flows. Green boxes indicate the two main competitors under nutrient changes: pelagic phytoplankton and submerged waterplants. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2012)), see also Fig. 2). The residuals time series were log-transformed 
prior to analysis and the rolling window size was set to 50% in all cases. 

To assess the effect of sampling intervals on the detection of EWIs, we 
chose six sampling intervals of which five represented typical lake 
sampling schemes ranging from daily; weekly (each 3rd day of the 
week); monthly (each 15th day of the month); quarterly (each 15th day 
of March, June, September and December), half-yearly (each 15th day of 
March and September) and yearly (each 15th of June). As a sixth sam-
pling interval, the yearly average of all daily samples was chosen to 
reflect sampling strategies such as passive samplers or possibly paleo-
limnological approaches (yearly-integrated: i.e., averaging all daily 
measurements per calendar year). Each subsampled time series was then 
analysed for breakpoint timing and EWIs as described above. 

3. Results 

3.1. Overview PCLake+ runs 

We ran PCLake+ to simulate critical transitions in both eutrophica-
tion and oligotrophication scenarios (see Fig. 3 for time series of 

temperature, phytoplankton chlorophyll-a and macrophyte dry weight). 
The critical transition during eutrophication occurred when the phos-
phorus load rose roughly above 0.007 gP m− 2 d-1. At a higher phos-
phorus load, the macrophytes disappeared and the phytoplankton 
chlorophyll-a suddenly increased. Year to year variation is visible in 
the chlorophyll-a after eutrophication has caused a shift, which can be 
attributed to temperature stochasticity. The critical transition during 
oligotrophication occurred when the phosphorus load was decreased to 
a lower level than with eutrophication and happened at 0.002 gP m− 2 d- 

1. At that point, macrophytes re-established and phytoplankton 
chlorophyll-a was largely reduced. However, the macrophyte biomass 
did not establish to the same level as when it was thriving just before the 
shift with eutrophication, likely since they were still in a recovery 
period. The difference of 0.005 gP m− 2 d-1 between the critical nutrient 
loads for eutrophication and oligotrophication can be attributed to 
positive feedbacks stabilizing either ecosystem state. Due to such sta-
bilizing positive feedbacks, regime shifts are not easily reversible as e.g., 
phosphorus load needs to be reduced further than the eutrophication 
breakpoint before the system switches back to its clear state again (also 
called a hysteresis, e.g. Beisner et al., 2003). 

Fig. 2. Example of the decomposition of the original z-scored time series of daily epilimnion chlorophyll-a in the eutrophication scenario into its seasonal, trend and 
residual components and subsequent rolling-window-based detection of EWIs AR1, SD, and DR on the residual component. The vertical line in the uppermost three 
panels indicates the location of the tipping point. 
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3.2. Breakpoint and EWI detection 

Both breakpoint analysis methods detected significant breakpoints in 
the time series of each variable around the shift from clear to turbid or 
vice versa (Table 1). The two methods for breakpoint detection yielded 
similar results in the eutrophication scenario (F-statistics mean: 42.49, 
sd: 3.12; first differencing mean: 43.73, sd: 2.24) which did not differ 
significantly (t(39.886) = -1.5382, p = 0.1319), and in the oligo-
trophication scenario (F-statistics mean: 35.18, sd: 2.31; first differ-
encing mean: 33.89, sd: 5.43) which did not differ significantly either (t 
(29.708) = 1.0459, p = 0.3041). 

The daily phytoplankton chlorophyll-a time series showed clear 
positive EWIs in both, eutrophication and oligotrophication scenarios 
(Fig. 4). All three EWIs were detected in weekly and monthly sampling 
frequencies, AR1 and DR were not detectable in longer sampling in-
tervals of e.g., three months (quarterly) or six months (half-yearly) 
(Fig. 4). Sampling at yearly intervals during the growing season or 
integrating daily measurements per calendar year (yearly-integrated 
sampling) allowed again the detection of positive EWIs in AR1 and SD. 
The other variable directly involved in the competition underlying the 
regime shift, submerged vegetation dry weight, showed a similar pattern 
in the eutrophication scenario, but a rather different pattern in the oli-
gotrophication scenario (Fig. 4). Overall, in the eutrophication scenario, 
SD indicated the change in variability across all sampling intervals quite 
robustly. Notably, DR could not be calculated on yearly intervals as 
yearly data have by default a frequency of one and therefore do not 
provide the data structure to compare low to high frequencies, pre-
cluding the use of this particular EWI in the yearly interval data. 

Positive EWIs were detected also in almost all of the other variables, 
including those are directly involved in the competition underlying the 
regime shift (epilimnion chlorophyll-a (oChla), and submerged 

vegetation biomass (sDVeg)), easily measurable variables that reflect 
changes in epilimnion chlorophyll-a (epilimnion transparency (aTrans-
parencyEpi), Secchi depth (aSecchiEpi) or epilimnion oxygen saturation 
(oO2WEpi)), as well as higher trophic levels and dissolved nutrient 
stocks in the water column and the sediment pore water (Fig. 5). Again, 
detection of EWIs seemed to work more reliably with high-frequency 
data and deteriorated with increasing sampling intervals except for 
both, yearly intervals sampled during the growing season and integrated 
yearly samples representing an average of all daily measurements of a 
calendar year. This dependency in EWI detection on sampling frequency 
was more prominent in AR1 (Fig. 5 red dots) and DR (Fig. 5 blue dots), 
whereas it was much less pronounced in SD (Fig. 5 green dots). 

4. Discussion 

Using a virtual lake approach, we explored the best choice of vari-
ables and sampling frequencies to identify EWIs in shallow lakes un-
dergoing a resource competition based regime shift driven by gradual 
changes in nutrient loading. We took advantage of time series of 
ecosystem and food-web variables generated in PCLake+ using long 
gradual eutrophication and oligotrophication scenarios. PCLake+ is a 
model known for its representation of both hysteresis as well as critical 
transitions in ecological states of lakes from clear, macrophyte domi-
nated, to turbid phytoplankton dominated conditions. While the extend 
of water systems experiencing hysteresis is, and has been, debated in the 
past (van Nes and Scheffer, 2005; Capon et al., 2015; Andersen et al., 
2020; Davidson et al., 2023), lakes are known to be able to show rela-
tively sudden shifts in ecology (e.g., Carpenter et al., 2001; Ibelings 
et al., 2007). However, lake size and spatial heterogeneity play a critical 
role in determining whether or not critical transitions and hysteresis will 
occur, with large lakes unlikely to display hysteresis (Janssen et al., 

Fig. 3. Changing chlorophyll-a and macrophyte 
biomass over time for eutrophication and oligo-
trophication scenarios. While the regime shift was 
driven by gradual changes in phosphorus load, re-
sponses to perturbations in temperature patterns (top 
panel, black: temperature dynamics in the eutrophi-
cation scenario, grey: temperature dynamics in the 
oligotrophication scenario) allowed detection of EWI 
trends over time. In the eutrophication scenario 
(black lines) chlorophyll-a concentrations (middle 
panel) show a sudden increase concomitant to a 
sudden loss in macrophyte biomass (lower panel). In 
the oligotrophication scenario (grey lines) the 
opposite biomass patterns were observed.   
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Table 1 
Table of all tested PCLake+ variables with explanation and unit (N = nitrogen, P = phosphorus). Breakpoints (BP) dates are evaluated by F statistic and first dif-
ferencing. Direction of change (d = decrease, i = increase) is indicated for both, eutrophication and oligotrophication scenarios. Median and standard deviation (sd) of 
breakpoints is noted at the end of the table.    

Eutrophication Oligotrophication 
Variable Explanation BP date F 

test (year) 
sup.F 
(Fstat) 

BP p BP date first 
diff (year) 

Shift BP date F 
test (year) 

sup.F 
(Fstat) 

BP p BP date first 
diff (year) 

Shift 

oChla Total chlorophyll a (µg L-1)  43.200 502,410 <

2.2e- 
16  

43.348 i  35.844 248,210 <

2.2e- 
16  

35.140 d 

aSecchiEpi Secchi depth (m)  43.386 154,750 <

2.2e- 
16  

43.337 d  36.197 729,610 <

2.2e- 
16  

35.167 i 

aTransparencyEpi Transparency (m− 1)  43.386 154,750 <

2.2e- 
16  

43.192 d  36.197 729,610 <

2.2e- 
16  

35.101 i 

oNH4WEpi N in dissolved NH4 (gN 
m− 3)  

43.800 107,190 <

2.2e- 
16  

43.825 d  35.200 30,012 <

2.2e- 
16  

34.910 d 

oNO3WEpi N in dissolved NO3 (gN 
m− 3)  

44.003 143,950 <

2.2e- 
16  

44.011 d  28.049 823,180 <

2.2e- 
16  

9.205 d 

oPO4WEpi P in dissolved PO4 (gP 
m− 3)  

43.003 46,898 <

2.2e- 
16  

44.145 d  28.786 560,540 <

2.2e- 
16  

35.288 d 

TP_Epi Total phosphorus (gP m− 3)  43.501 77,685 <

2.2e- 
16  

43.921 i  35.803 155,490 <

2.2e- 
16  

34.999 d 

oSiO2WEpi Dissolved SiO2 (gSi m− 3)  42.852 179,640 <

2.2e- 
16  

43.008 d  36.246 287,900 <

2.2e- 
16  

35.123 i 

oO2WEpi Dissolved O2 (gO2 m− 3)  43.033 120,270 <

2.2e- 
16  

43.822 d  36.255 171,830 <

2.2e- 
16  

34.981 i 

oDDetWEpi Detritus dry weight (gDW 
m− 3)  

44.003 143,590 <

2.2e- 
16  

44.140 i  36.052 461,850 <

2.2e- 
16  

35.244 d 

oDIMWEpi Inorganic matter dry 
weight (gDW m− 3)  

44.003 288,540 <

2.2e- 
16  

44.904 i  35.099 28,820 <

2.2e- 
16  

34.907 d 

oDDiatWEpi Diatom dry weight (gDW 
m− 3)  

43.896 215,010 <

2.2e- 
16  

43.953 i  36.047 672,690 <

2.2e- 
16  

34.973 d 

oDGrenWEpi Green algae dry weight 
(gDW m− 3)  

43.622 533,920 <

2.2e- 
16  

43.945 i  34.438 66,370 <

2.2e- 
16  

34.912 d 

oDBlueWEpi Cyanobacteria dry weight 
(gDW m− 3)  

43.115 109,430 <

2.2e- 
16  

43.203 i  35.564 153,950 <

2.2e- 
16  

35.096 d 

oDZooEpi Zooplankton dry weight 
(gDW m− 3)  

32.759 18,813 <

2.2e- 
16  

43.945 i  36.241 2E + 06 <

2.2e- 
16  

35.737 d 

sDFiAd Adult fish dry weight 
(gDW m− 2)  

44.003 22,564 <

2.2e- 
16  

44.162 i  37.014 160,150 <

2.2e- 
16  

35.866 i 

sDFiJv Juvenile fish dry weight 
(gDW m− 2)  

44.003 60,595 <

2.2e- 
16  

44.523 i  36.309 971,580 <

2.2e- 
16  

35.216 d 

sDPisc Predatory fish dry weight 
(gDW m− 2)  

44.000 431,580 <

2.2e- 
16  

47.288 d  32.586 145,830 <

2.2e- 
16  

31.838 i 

sNH4S N in dissolved NH4 

sediment pore water (gN 
m− 2)  

42.340 124,610 <

2.2e- 
16  

45.096 d  35.841 104,660 <

2.2e- 
16  

35.115 d 

sNO3S N in dissolved NO3 

sediment pore water (gN 
m− 2)  

40.756 1,714,200 <

2.2e- 
16  

45.490 i  36.148 425,740 <

2.2e- 
16  

35.123 d 

sPO4S P in dissolved PO4 

sediment pore water (gP 
m− 2)  

33.033 22,174 <

2.2e- 
16  

34.356 i  36.351 131,590 <

2.2e- 
16  

35.101 d 

sDVeg Submerged vegetation dry 
weight (gDW m− 2)  

43.756 236,560 <

2.2e- 
16  

44.005 d  36.219 243,200 <

2.2e- 
16  

35.197 i 

sDBent Zoobenthos dry weight 
sediment (gDW m− 2)  

44.003 96,244 <

2.2e- 
16  

44.142 d  36.564 169,160 <

2.2e- 
16  

35.214 i 

median   43.501    43.953   36.052    35.115  

(continued on next page) 
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2014, 2017) (. Similarly, in smaller lakes, the spatial distribution of lake 
inflow of water and nutrients is key in determining both hysteresis as 
well as the linearity of the response of the lake (Janssen et al., 2019b). 
Here we simulated a lake without spatial differentiation in both nutrient 
load or water inflow, which translates to a lake with diffuse nutrient 
loading and water inflow originating from seepage and rainfall (i.e both 
being equally distributed over the lake). In drainage lakes, or point 
source loaded lakes, hysteresis would be less apparent. Nonetheless, 
sudden shifts can still occur, and hence early warning signals can also be 
expected in different lake types (Janssen et al., 2019b). Primarily 
though, when projecting our results on the real world they will fit best 
within the context of relatively small, temperate, diffuse, seepage 
shallow lakes. We virtually sampled 23 variables of PCLake+, tested 

them for temporal breakpoints and evaluated the effect of sampling 
interval and temporal integration on the detectability of three 
commonly used EWIs. Breakpoints with high temporal consistency and 
positive EWIs were detected in variables directly involved in the critical 
transition (chlorophyll-a and phytoplankton biomasses). While 
chlorophyll-a showed the expected EWIs in both, the eutrophication 
scenario as well as the oligotrophication scenario, the submerged 
vegetation showed low values in AR1 and DR in the reoligotrophication 
scenario. This may be due to the very low amount of submerged vege-
tation at the start of the reoligotrophication period which may make it 
more difficult to pick up changes in temporal autocorrelation and den-
sity ratio. Moreover, breakpoints and EWIs were also detected in all the 
other variables tested, indicating that the changes in phytoplankton are 

Table 1 (continued )   

Eutrophication Oligotrophication 
Variable Explanation BP date F 

test (year) 
sup.F 
(Fstat) 

BP p BP date first 
diff (year) 

Shift BP date F 
test (year) 

sup.F 
(Fstat) 

BP p BP date first 
diff (year) 

Shift 

standard 
deviation   

3.119    2.235   2.310    5.430   

AR1 SD DR

oC
hla

eutrophication

sDVeg

eutrophication

oC
hla

oligotrophication

sDVeg

oligotrophication

da
ily

we
ek

ly
m

on
th

ly
qu

ar
te

rly
ha

lf
ye

ar
ly

ye
ar

ly
ye

ar
ly

in
te

gr
at

ed

da
ily

we
ek

ly
m

on
th

ly
qu

ar
te

rly
ha

lf
ye

ar
ly

ye
ar

ly
ye

ar
ly

in
te

gr
at

ed

da
ily

we
ek

ly
m

on
th

ly
qu

ar
te

rly
ha

lf
ye

ar
ly

ye
ar

ly
ye

ar
ly

in
te

gr
at

ed

0.5

0.0

0.5

1.0

0.5

0.0

0.5

1.0

0.5

0.0

0.5

1.0

0.5

0.0

0.5

1.0

Intervall

tneiciffeoc
uatlladneK

variable
oChla

sDVeg

Fig. 4. Kendall tau coefficients for EWIs AR1, SD and 
DR (columns) for the PCLake+ variables epilimnion 
chlorophyll-a (oChla, orange) and submerged vege-
tation dry weight (sDVeg, green) in the eutrophication 
(upper two rows) and the oligotrophication (lower 
two rows) scenarios showing how all three EWIs were 
generally well detected in time series of daily to 
monthly and in the yearly-integrated frequency but 
not in time series of quarterly or half-yearly fre-
quency. Note that the signals for submerged vegeta-
tion in the oligotrophication scenario deviate with 
high values overall for SD and a different pattern for 
AR1 and DR. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   
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passed on through the entire food web. Based on daily time series, 
positive EWIs were found in all 23 variables except for predatory fish 
(negative AR1 in the oligotrophication scenario) and submerged vege-
tation (negative DR in the oligotrophication scenario). Overall, the 
probability of detecting positive EWIs decreased with longer sampling 
intervals except for yearly as well as yearly integrated sampling. 

Realistically achievable sampling frequencies vary among water 
quality variables, contingent on costs, technical feasibility, or time 
constraints. We focused on testing relevant sampling frequencies that 
lake managers are likely to have available. First, sampling frequencies 
tested in our study included relatively high-frequency sampling (daily) 
that could be realised with automated sampling stations or probes (e.g. 
(Batt et al., 2019)), which give good temporal resolution but usually 
cover little spatial area and are only available for a limited set of bio-
logical variables such as photosynthetic pigments (chlorophyll-a, 
phycocyanin), or physical and chemical variables such as irradiance or 
dissolved oxygen. Second, we tested time intervals that are traditionally 
used for a wide variety of variables in long-term monitoring of water 

bodies (weekly, monthly, quarterly, half-yearly and yearly) and typi-
cally vary per measured variable in their practically realisable temporal 
resolution and spatial coverage (e.g., zooplankton, fish, submerged 
vegetation). Third, we also tested a temporally integrated sampling in-
terval (yearly-integrated) that corresponds to sampling methods such as 
passive samplers or paleolimnological approaches, which integrate over 
time (smoothing out extremes) but are also only available for a limited 
set of variables that preserve well, such as diatom frustules (Beck et al., 
2018). We would also like to point out that our method did not account 
for observational errors, either systematic or random. In particular, 
random observational errors may end up in the residual timeline, 
resulting in lower confidence in detectability of the EWIs in real world 
observational data (Perretti and Munch, 2012). 

Even if positive EWIs are found in empirical time series, their correct 
interpretation is often hampered by a lack of knowledge of the mecha-
nisms causing the regime shift and, hence, the type of regime shift that 
the lake is approaching. Positive EWI patterns can also be found in a 
wider range of transitions and may indicate a potential increase in 

Fig. 5. Dot plot of Kendall tau co-
efficients for AR1 (red), SD (green) and 
DR (blue) per state variable in PCLake+
and per scenario visualising the distri-
bution of the three EWIs. Note that in-
tervals daily to half-yearly comprise 
three early warning indicators (autore-
gression at lag-1 (AR1), standard devia-
tion (SD) and density ratio (DR)) while 
yearly and yearly-integrated comprise 
two early warning indicators (autore-
gression at lag-1 (AR1), standard devia-
tion (SD)). (For interpretation of the 
references to colour in this figure legend, 
the reader is referred to the web version 
of this article.)   
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system sensitivity to perturbations rather than the approach of an 
impending catastrophic transition (Boettiger et al., 2013; Kéfi et al., 
2013). Therefore, a positive EWI on its own without mechanistic context 
is not a reliable indication for an approaching regime shift (Spears et al., 
2017). False-positive EWIs provide a wrong prediction of the future 
trajectory of the ecosystem, and any management action based on these 
false positives would lead to waste of effort, resources and trust in sci-
entific advice (Spears et al., 2016). In real-world systems, it is often 
difficult to ascertain whether an ecosystem state is in transit towards a 
critical transition. To assess the nature of a regime shift empirically 
would require that the ecosystem is observed for both deterioration and 
recovery trajectory to ascertain the presence of hysteresis. However, this 
would only be possible in hindsight, thereby refuting the idea of EWIs as 
preventative management indicators. Here, creating a virtual lake by 
calibrating PCLake+ for the lake in question and running a basic critical 
transition check can help assess whether the lake can show alternative 
stable states at all and thereby inform whether any observed positive 
EWIs are likely true or false positives. True positive EWIs are expected in 
variables directly affected by gradually changing pressures, in our case 
phytoplankton biomasses responding to changing nutrients. We found 
positive EWIs and clear breakpoints for all phytoplankton groups (di-
atoms, green algae, or cyanobacteria) as well as for derivative variables 
such as chlorophyll-a, transparency and Secchi depth. Temporal 
breakpoints and positive EWIs were also observed in other food web 
variables (e.g., zooplankton biomass, fish biomass), even though these 
have no direct mechanistic link to the changing nutrient pressure. These 
variables are linked to the changes in phytoplankton biomass and follow 
this change, hence EWIs observed in these variables represent a different 
type of regime shift not directly linked to critical transitions (Boettiger 
et al., 2013; Kéfi et al., 2013). Nonetheless, positive EWIs in these var-
iables, suggest that the higher trophic level variables (e.g., zooplankton, 
fish) absorb signals of change in the lower levels of the food web and 
therefore can show a similar data structure as the phytoplankton 
variables. 

In our virtual lake data, the detection of positive EWIs generally 
decreased with longer sampling intervals, particularly in the case of AR1 
and DR. Interestingly, yearly sampling intervals yielded again a higher 
probability of detecting EWIs, likely helped by our choice of sampling 
during the summer and thus growth season and thereby close to the peak 
of productivity. Also, yearly averaging of daily measurements yielded a 
higher probability of detecting EWIs, explaining why time-integrated 
measures such as passive samplers or paleolimnological approaches 
can be quite successful at detecting EWIs (Frossard et al., 2015; Lenton 
et al., 2012; Spanbauer et al., 2014). Integration of high-frequency 
measurements over longer time scales has already been shown to cap-
ture trends in AR1 independently of time scale quite well (Batt et al., 
2019; 2013) and therefore seems an advisable strategy if high-frequency 
data cannot be collected or is available but released or reliable only at 
lower frequencies. However, many existing monitoring schemes rely on 
measurements taken during field trips at regular intervals and therefore 
are better represented in our non-time-integrated sampling approach (i. 
e., daily to yearly point sampling). While our results show that the fre-
quency of sampling intervals likely matters for the detection of EWIs, 
many variables are not easily or meaningfully measured at daily or even 
weekly intervals (e.g., fish, submerged vegetation). Our approach of 
using the ecosystem model PCLake+ to assess which variables and 
sampling intervals are promising for the detection of EWIs generates 
new avenues for lake managers to make informed choices on sampling 
schemes and alarm thresholds (Pace et al., 2017) for their lake in 
question. 

Our study shows that variables for the detection of EWIs that are 
within the capacity of lake managers to measure appear to exist, both in 
terms of costs and in terms of time investment. Despite this promising 
news, a bigger question remains as to whether or not managers are 
capable of responding quickly enough to EWIs, particularly in the case of 
yearly measurements (Davidson et al., 2018; Spears et al., 2016). This 

question is two-fold, on the one hand relying strongly on the efficacy of 
measures to turn the tide of an oncoming critical transition and on the 
other hand relying on the time frame in which measures may be 
implemented (Biggs et al., 2009; Pace et al., 2017). PCLake+ is already 
capable of implementing numerous measures (e.g., mowing (Kuiper 
et al., 2017), dredging (Janse and van Liere, 1995), flushing and bio-
manipulation (Janssen et al., 2019b)). In our example, the underlying 
mechanism for the regime shift is a change in competitive ability be-
tween phytoplankton and submerged plants driven by changes in 
nutrient loading. Few studies explore other mechanisms that can cause 
regime shifts in aquatic systems such as trophic cascades (Carpenter 
et al., 2001) or intraguild predation (Scharfenberger et al., 2013), and to 
our knowledge, none assessed the influence of sampling frequencies for 
variables in regime shifts caused by these mechanisms (Kéfi et al., 2019). 
Combined with expert knowledge on the time-to-act of such measures, 
PCLake+ could be used to design a monitoring scheme focussed on 
early-warning detection and measure deployment. Furthermore, the 
model may also serve to assess the continued utility of such a scheme in a 
changing world (Mooij et al., 2007; Nielsen et al., 2014). 

5. Conclusions 

Lake water quality management could benefit from early detection of 
ecological instability (Spears et al., 2016). Yet due to high uncertainties 
in the practical application of EWIs on empirical data from monitoring 
schemes in natural ecosystems (Burthe et al., 2016; Gsell et al., 2016), 
resilience-based management needs further development. Here we used 
a relatively complex model to mimic possible field measurement stra-
tegies. Creating virtual ecosystems for testing system resilience and 
response to management actions may provide a way forward to help 
make informed choices in ecosystem management. Our modelling 
approach elucidated three important suggestions that can push future 
resilient-based management forward. First, managers should aim for 
frequent measurements with a minimum of one measurement per 
month. Ideally, measurements are carried out weekly or daily, to 
improve EWI detection and strength. Strikingly though, yearly mea-
surements in summer or even yearly time-integrated measurements 
from, for example, sediment cores may also serve as a good data basis for 
evaluating EWIs. The latter may be especially useful when sites are not 
easily accessible, or time or financial capacities are limited. In such 
cases, single summer measurements of chlorophyll-a or vegetation, or, 
alternatively, integrated samples of diatom abundances (Beck et al., 
2018) or integrated phosphorus or nitrogen measurements using passive 
samplers (Rozemeijer et al., 2010) may prove useful. The drawback, 
however, is that the low sampling frequency may not leave enough time 
for reactive management. Second, easily measurable variables such as 
chlorophyll-a, transparency, Secchi depth and oxygen concentration 
showed good results indicating that EWI detection does not necessarily 
need very advanced and expensive equipment. This is especially useful 
when considered in the context of citizen science, allowing water 
managers to employ citizens as sensors armed with easily available 
measurement tools such as a simple Secchi disk or a cheap oxygen probe. 
Third, due to variation within the different PCLake+ variables, we 
suggest that a multi-variable approach in which a suite of variables is 
used to detect EWIs would improve the early detection of ecological 
instability. Based on our virtual lake exercise, we thus advise managers 
to ideally aim for high-frequency measurements of multiple easily and 
cheaply measurable variables that are known for their low observational 
errors (e.g., oxygen concentration) or focus on integrated approaches 
using passive samplers or sedimented material (e.g., yearly integrated 
phosphorus concentrations in water). Our work here shows that EWIs 
are likely detectable at time scales and in measurements widely avail-
able to water management, thereby making them an effective tool for 
lake managers in their struggle to prevent lake critical transitions in the 
face of global change. 
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The script for the generation of the data through the ecosystem 
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