6 research outputs found

    Expanding the toolbox of metabolically stable lipid prodrug strategies

    Get PDF
    Nucleoside- and nucleotide-based therapeutics are indispensable treatment options for patients suffering from malignant and viral diseases. These agents are most commonly administered to patients as prodrugs to maximize bioavailability and efficacy. While the literature provides a practical prodrug playbook to facilitate the delivery of nucleoside and nucleotide therapeutics, small context-dependent amendments to these popular prodrug strategies can drive dramatic improvements in pharmacokinetic (PK) profiles. Herein we offer a brief overview of current prodrug strategies, as well as a case study involving the fine-tuning of lipid prodrugs of acyclic nucleoside phosphonate tenofovir (TFV), an approved nucleotide HIV reverse transcriptase inhibitor (NtRTI) and the cornerstone of combination antiretroviral therapy (cART). Installation of novel lipid terminal motifs significantly reduced fatty acid hepatic ω-oxidation while maintaining potent antiviral activity. This work contributes important insights to the expanding repertoire of lipid prodrug strategies in general, but particularly for the delivery and distribution of acyclic nucleoside phosphonates

    HIV-1 re-suppression on a first-line regimen despite the presence of phenotypic drug resistance.

    No full text
    We have previously reported on HIV-1 infected patients who fail anti-retroviral therapy but manage to re-suppress without a regimen change despite harbouring major drug resistance mutations. Here we explore phenotypic drug resistance in such patients in order to better understand this phenomenon. Patients (n = 71) failing a non-nucleoside reverse transcriptase inhibitor (NNRTI)-based regimen, but who subsequently re-suppressed on the same regimen, were assessed for HIV-1 genotypic drug resistance through Sanger sequencing. A subset (n = 23) of these samples, as well as genotypically matched samples from patients who did not re-suppress (n = 19), were further assessed for phenotypic drug resistance in an in vitro single cycle assay. Half of the patients (n = 36/71, 51%) harboured genotypic drug resistance, with M184V (n = 18/36, 50%) and K103N (n = 16/36, 44%) being the most prevalent mutations. No significant difference in the median time to re-suppression (31-39 weeks) were observed for either group (p = 0.41). However, re-suppressors with mutant virus rebounded significantly earlier than those with wild-type virus (16 vs. 33 weeks; p = 0.014). Similar phenotypic drug resistance profiles were observed between patients who re-suppressed and patients who failed to re-suppress. While most remained susceptible to stavudine (d4T) and zidovudine (AZT), both groups showed a reduced susceptibility to 3TC and NNRTIs. HIV- 1 infected patients on an NNRTI-based regimen can achieve viral re-suppression on the same regimen despite harbouring viruses with genotypic and phenotypic drug resistance. However, re-suppression was less durable in those with resistance, reinforcing the importance of appropriate regimen choices, ongoing viral load monitoring and adherence counselling

    Novel Cyclopropyl-Indole Derivatives as HIV Non-Nucleoside Reverse Transcriptase Inhibitors

    No full text
    The HIV pandemic represents one of the most serious diseases to face mankind in both a social and economic context, with many developing nations being the worst afflicted. Due to ongoing resistance issues associated with the disease, the design and synthesis of anti-HIV agents presents a constant challenge for medicinal chemists. Utilizing molecular modeling, we have designed a series of novel cyclopropyl indole derivatives as HIV non-nucleoside reverse transcriptase inhibitors and carried out their preparation. These compounds facilitate a double hydrogen bonding interaction to Lys101 and efficiently occupy the hydrophobic pockets in the regions of Tyr181/188 and Val179. Several of these compounds inhibited HIV replication as effectively as nevirapine when tested in a phenotypic assay
    corecore