7 research outputs found

    Distributed Fault-Tolerant Algorithm for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are a set of tiny autonomous and interconnected devices. These nodes are scattered in a region of interest to collect information about the surrounding environment depending on the intended application. In many applications, the network is deployed in harsh environments such as battlefield where the nodes are susceptible to damage. In addition, nodes may fail due to energy depletion and breakdown in the onboard electronics. The failure of nodes may leave some areas uncovered and degrade the fidelity of the collected data. Therefore, establish a fault-tolerant mechanism is very crucial. Given the resource-constrained setup, this mechanism should impose the least overhead and performance impact. This paper focuses on recovery process after a fault detection phase in WSNs. We present an algorithm to recover faulty node called Distributed Fault-Tolerant Algorithm (DFTA).The performance evaluation is tested through simulation to evaluate some factors such as: Packet delivery ratio, control overhead, memory overhead and fault recovery delay. We compared our results with referenced algorithm: Fault Detection in Wireless Sensor Networks (FDWSN), and found that our DFTA performance outperforms that of FDWSN

    Gestion dynamique des ressources spectrales dans les réseaux LTE

    No full text
    The exponential growth in the number of communications devices has set out new ambitious targets to meet the ever-increasing demand for user capacity in emerging wireless systems. However, the inherent impairments of communication channels in cellular systems pose constant challenges to meet the envisioned targets. High spectral reuse efficiency was adopted as a solution to higher data rates. Despite its benefits, high spectral reuse leads to increased interference over the network, which degrades performances of mobile users with bad channel quality. To face this added interfence, OFDM (Orthogonal Frequency Division Multiplexing) is used for the new 4th generation network. Thanks to its orthogonality OFDM eliminates the intra-cellular interference, but when the same resources are used in two adjacents cells, the inter-cell interference becomes severe. To get rid of the latter, several methods for Inter-Cell Interference Coordination (ICIC) have been proposed. ICIC allows coordinated radio resources management between multiple cells. The eNodeBs can share resource usage information and interference levels over the X2 interface through LTE-normalized messages. Non-cooperative game theory was largely applied were eNodeBs selfishly selects resource blocks (RBs) in order to minimize interference. In this thesis, we stress on ICIC for the downlink of a cellular OFDMA system in the context of the SOAPS (Spectrum Opportunistic Access in Public Safety) project. This project focuses on the improvement of frequency resource scheduling for Broadband Services provision by PMR (Private Mobile Radio) systems using LTE technologies. We addressed this problem with four different solutions based on Non-cooperative game theory, three algorithms are devoted to RB selection in order to manage the interference, while the last one is a power control scheme with power economy and enhanced system performancesLa croissance exponentielle du nombre de dispositifs communicants et des services sans fils émergents fixe des objectifs toujours plus haut pour répondre à la demande de capacité sans cesse croissante des utilisateurs. Cela pose des défis constants pour atteindre les objectifs envisagés. La réutilisation spectrale élevée (High efficiency spectral reuse) a été adopté, cependant, elle conduit à des interférences accrues sur le réseau, ce qui dégrade les performances. L'OFDM (Orthogonal Frequency Division Multiplexing) est utilisé comme solution dans les réseaux de 4 G. Grâce à son orthogonalité, l'OFDM élimine l'interférence intra-cellulaire, mais l'interférence inter-cellule reste importante. Plusieurs méthodes connues sous le nom d'Inter-Cell interférences coordination (ICIC) ont été proposées pour les diminuer. L'ICIC permet la gestion des ressources radio coordonnée entre plusieurs cellules appelées ENodeB. Ces eNodeB peuvent partager les informations nécessaires grâce à l'interface X2 qui les relient, ces informations sont transmises par des messages LTE normalisés. Lorsque les ENodeBs sélectionnent égoïstement les ressources, la théorie de jeux non-coopératifs est largement appliquée pour trouver un juste équilibre. Dans cette thèse, nous mettons l'accent sur l'ICIC pour la liaison descendante d'un système OFDMA cellulaire dans le contexte du projet SOAPS (Spectrum opportuniste accès à la Sécurité publique). Ce projet a pour but l'amélioration de la planification des ressources de fréquences pour fournir des services à large bande dans les systèmes PMR (radiocommunications mobiles privées) en utilisant les technologies LTE. Nous adressons le problème d'ICIC en proposant quatre solutions différentes sous forme d'algorithmes entièrement décentralisés, ces algorithmes se basent sur la théorie des jeux non-coopératifs avec des équilibres de Nash purs des jeux considéré

    Game theoretic framework for inter-cell interference coordination

    No full text
    International audienceInter-Cell Interference Coordination (ICIC) is commonly identified as a key radio resource management mechanism to enhance system performance of 4G networks. This paper addresses the problem of ICIC in the downlink of cellular OFDMA systems where the resource selection process is apprehended as a congestion game. Proving the existence of Pure Nash equilibriums (PNE) shows that stable resource allocations can be reached by selfish Base Stations (BS). We resort to a fully decentralized algorithm proposed by Berenbrinck et al [1] to attain the PNEs of the modeled game. Each BS will strive to select a pool of favorable resources with low interference based on local knowledge only

    Replicator dynamics for distributed Inter-Cell Interference Coordination

    No full text
    International audienceIn order to achieve high data rates in future wireless packet switched cellular networks, aggressive frequency reuse is inevitable due to the scarcity of the radio resources. While intra-cell interference is mostly mitigated and can be ignored, inter-cell interference can severely degrade performances with bad channel quality. Hence, Inter-Cell Interference Coordination (ICIC) is commonly identified as a key radio resource management mechanism to enhance system performance of 4G networks. This paper addresses the problem of ICIC in the downlink of Long Term Evolution (LTE) systems where the resource selection process is apprehended as a potential game. Proving the existence of Nash Equilibriums (NE) shows that stable resource allocations can be reached by selfish Base Stations (BS). We put forward a fully decentralized algorithm based on replicator dynamics to attain the pure NEs of the modeled game. Each BS will endeavor to select a set of favorable resources with low interference based on local knowledge only making use of signaling messages already present in the downlink of LTE systems
    corecore