1,791 research outputs found
The Securities and Exchange Commission: Its Organization and Functions Under the Securities Act of 1933
Gas diffusivity and permeability through the firn column at Summit, Greenland: measurements and comparison to microstructural properties
The physical structure of polar firn plays a key role in the mechanisms by
which glaciers and ice sheets preserve a natural archive of past atmospheric
composition. This study presents the first measurements of gas diffusivity
and permeability along with microstructural information measured from the
near-surface firn through the firn column to pore close-off. Both fine- and
coarse-grained firn from Summit, Greenland are included in this study to
investigate the variability in firn caused by seasonal and storm-event
layering. Our measurements reveal that the porosity of firn (derived from
density) is insufficient to describe the full profiles of diffusivity and
permeability, particularly at porosity values above 0.5. Thus, even a model
that could perfectly predict the density profile would be insufficient for
application to issues involving gas transport. The measured diffusivity
profile presented here is compared to two diffusivity profiles modeled from
firn air measurements from Summit. Because of differences in scale and in
firn processes between the true field situation, firn modeling, and
laboratory measurements, the results follow a similar overall pattern but do
not align; our results constitute a lower bound on diffusive transport. In
comparing our measurements of both diffusivity and permeability to previous
parameterizations from numerical 3-D lattice-Boltzmann modeling, it is
evident that the previous relationships to porosity are likely site-specific.
We present parameterizations relating diffusivity and permeability to
porosity as a possible tool, though use of direct measurements would be far
more accurate when feasible. The relationships between gas transport
properties and microstructural properties are characterized and compared to
existing relationships for general porous media, specifically the
Katz–Thompson (KT), Kozeny–Carman (KC), and Archie's law approximations.
While those approximations can capture the general trend of gas transport
relationships, they result in high errors for individual samples and fail to
fully describe firn variability, particularly the differences between coarse-
and fine-grained firn. We present a direct power law relationship between
permeability and gas diffusivity based on our co-located measurements;
further research will indicate if this type of relationship is site-specific.
This set of measurements and relationships contributes a unique starting
point for future investigations in developing more physically based models of
firn gas transport
Estimating Maximum Performance: Effects of Intraindividual Variation
Researchers often estimate the performance capabilities of animals using a small number of trials per individual. This procedure inevitably underestimates maximum performance, but few studies have examined the magnitude of this effect. In this study we explored the effects of intraindividual variation and individual sample size on the estimation of locomotor performance parameters. We measured sprint speed of the lizard Sceloporus occidentalis at two temperatures (20 degrees C and 35 degrees C), obtaining 20 measurements per individual. Speed did not vary temporally, indicating no training or fatigue effects. About 50% of the overall variation in speed at each temperature was due to intraindividual variation. While speed was repeatable, repeatability decreased slightly with increasing separation between trials. Speeds at 20 degrees C and 35 degrees C were positively correlated, indicating repeatability across temperatures as well. We performed statistical sampling experiments in which we randomly drew a subset of each individual\u27s full set of 20 trials. As expected, the sample\u27s maximum speed increased with the number of trials per individual; for example, five trials yielded an estimate averaging 89% of the true maximum. The number of trials also influenced the sample correlation between mean speeds at 20 degrees C and 35 degrees C; for example, five trials yielded a correlation coefficient averaging 90% of the true correlation. Therefore, intraindividual variation caused underestimation of maximal speed and the correlation between speeds across temperatures. These biases declined as the number of trials per individual increased, and depended on the magnitude of intraindividual variation, as illustrated by running sampling experiments that used modified data sets
Recommended from our members
A Consensus on Second Stage Analyses in Ecological Inference Models
Statistic
Dominance of grain size impacts on seasonal snow albedo at deforested sites in New Hampshire
Snow cover serves as a major control on the surface energy budget in temperate regions due to its high reflectivity compared to underlying surfaces. Winter in the northeastern United States has changed over the last several decades, resulting in shallower snowpacks, fewer days of snow cover, and increasing precipitation falling as rain in the winter. As these climatic changes occur, it is imperative that we understand current controls on the evolution of seasonal snow albedo in the region. Over three winter seasons between 2013 and 2015, snow characterization measurements were made at three open sites across New Hampshire. These near-daily measurements include spectral albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density, black carbon content, local meteorological parameters, and analysis of storm trajectories using the Hybrid Single-Particle Lagrangian Integrated Trajectory model. Using analysis of variance, we determine that land-based winter storms result in marginally higher albedo than coastal storms or storms from the Atlantic Ocean. Through multiple regression analysis, we determine that snow grain size is significantly more important in albedo reduction than black carbon content or snow density. And finally, we present a parameterization of albedo based on days since snowfall and temperature that accounts for 52% of variance in albedo over all three sites and years. Our improved understanding of current controls on snow albedo in the region will allow for better assessment of potential response of seasonal snow albedo and snow cover to changing climate
Oral health in relation to all-cause mortality: the IPC cohort study
We evaluated the association between oral health and mortality. The study population comprised 76,188 subjects aged 16–89 years at recruitment. The mean follow-up time was 3.4 ± 2.4 years. Subjects with a personal medical history of cancer or cardiovascular disease and death by casualty were excluded from the analysis. A full-mouth clinical examination was performed in order to assess dental plaque, dental calculus and gingival inflammation. The number of teeth and functional masticatory units 10 missing teeth and functional masticatory units 10 missing teeth (HR = 2.31, [95% CI: 1.40–3.82]) and functional masticatory units <5 (HR = 2.40 [95% CI 1.55–3.73]). Moreover, when ≥3 oral diseases were cumulated in the model, the risk increased for all-cause mortality (HR = 3.39, [95% CI: 2.51–5.42]), all-cancer mortality (HR = 3.59, [95% CI: 1.23–10.05]) and non-cardiovascular and non-cancer mortality (HR = 4.71, [95% CI: 1.74–12.7]). The present study indicates a postive linear association between oral health and mortality
Reversal of murine alcoholic steatohepatitis by pepducin-based functional blockade of interleukin-8 receptors.
OBJECTIVE: Alcoholic steatohepatitis is a life-threatening condition with short-term mortality up to 40%. It features hepatic neutrophil infiltration and blood neutrophilia, and may evolve from ethanol-induced breakdown of the enteric barrier and consequent bacteraemia. Signalling through CXCR1/2 G-protein-coupled-receptors (GPCRs), the interleukin (IL)-8 receptors, is critical for the recruitment and activation of neutrophils. We have developed short lipopeptides (pepducins), which inhibit post-ligand GPCR activation precisely targeting individual GPCRs. DESIGN: Experimental alcoholic liver disease was induced by administering alcohol and a Lieber-DeCarli high-fat diet. CXCR1/2 GPCRs were blocked via pepducins either from onset of the experiment or after disease was fully established. Hepatic inflammatory infiltration, hepatocyte lipid accumulation and overall survival were assessed as primary outcome parameters. Neutrophil activation was assessed by myeloperoxidase activity and liver cell damage by aspartate aminotransferase and alanine aminotransferase plasma levels. Chemotaxis assays were performed to identify chemoattractant signals derived from alcohol-exposed hepatocytes. RESULTS: Here, we show that experimental alcoholic liver disease is driven by CXCR1/2-dependent activation of neutrophils. CXCR1/2-specific pepducins not only protected mice from liver inflammation, weight loss and mortality associated with experimental alcoholic liver disease, but therapeutic administration cured disease and prevented further mortality in fully established disease. Hepatic neutrophil infiltration and triglyceride accumulation was abrogated by CXCR1/2 blockade. Moreover, CXCL-1 plasma levels were decreased with the pepducin therapy as was the transcription of hepatic IL-1β mRNA. CONCLUSIONS: We propose that high circulating IL-8 in human alcoholic hepatitis may cause pathogenic overzealous neutrophil activation, and therapeutic blockade via pepducins merits clinical study.Wellcome Trust Career Re-entry Fellowship (103077/Z/13/Z) to NCK, Christian Doppler Research Society to HT and European Research Council (FP7/2007- 2013) to AKThis is the final version of the article. It first appeared from the BMJ Group via http://dx.doi.org/10.1136/gutjnl-2015-31034
Ionization dynamics in expanding clusters studied by XUV pump probe spectroscopy
he expansion and disintegration dynamics of xenon clusters initiated by the ionization with femtosecond soft x ray extreme ultraviolet XUV pulses were studied with pump probe spectroscopy using the autocorrelator setup of the Free Electron LASer in Hamburg FLASH facility. The ionization by the first XUV pulse of 92 eV photon energy 8 1012 W cm amp; 8722;2 leads to the generation of a large number of quasi free electrons trapped by the space charge of the cluster ions. A temporally delayed, more intense probe 4 1013 W cm amp; 8722;2 pulse substantially increases a population of nanoplasma electrons providing a way of probing plasma states in the expanding cluster by tracing the average charge of fragment ions. The results of the study reveal a timescale for cluster expansion and disintegration, which depends essentially on the initial cluster size. The average charge state of fragment ions, and thus the cluster plasma changes significantly on a timescale of 1 3 p
Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules
This paper gives an account of our progress towards performing femtosecond
time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe
setup combining optical lasers and an X-ray Free-Electron Laser. We present
results of two experiments aimed at measuring photoelectron angular
distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and
dissociating, laseraligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss
them in the larger context of photoelectron diffraction on gas-phase molecules.
We also show how the strong nanosecond laser pulse used for adiabatically
laser-aligning the molecules influences the measured electron and ion spectra
and angular distributions, and discuss how this may affect the outcome of
future time-resolved photoelectron diffraction experiments.Comment: 24 pages, 10 figures, Faraday Discussions 17
ELEMENTS OF PATENT LAW. FRED H. RHOADES.* Ithaca, New York: Cornell Univ. Press, 1949. Pp. ix, 189. $2.75.
- …
