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INTRODUCTION
Locomotor performance is a central measure of whole-organism
function, and is considered a key link between fitness in the natural
environment and underlying biochemical, morphological and
physiological traits (Huey and Stevenson, 1979; Arnold, 1983;
Arnold and Bennett, 1988; Garland and Losos, 1995; Norberg,
1995). Consequently, hundreds of studies have measured burst
speed, endurance, jumping distance and other aspects of locomotor
performance in the laboratory (Garland, 1994; Wainwright and
Reilly, 1994; Garland and Losos, 1995; Alexander, 2002).
Laboratory measurements of locomotor performance are used for
diverse purposes, ranging from identifying its mechanistic basis (e.g.
Garland, 1984; Gleeson and Harrison, 1988; Miles et al., 1995;
Bonine and Garland, 1999) to examining the fitness consequences
of among-individual variation in performance (Arnold and Bennett,
1988; Jayne and Bennett, 1990; Watkins, 1996; Le Galliard et al.,
2004; Miles, 2004; Husak et al., 2006; Peterson and Husak, 2006;
Irschick and Meyers, 2007).

Whereas the goals of locomotion studies are diverse, laboratory
procedures often share a common feature: maximum performance
[less commonly, mean performance (Jayne and Bennett, 1990)] is
estimated using a relatively small number of trials per individual.
Researchers have long recognized that the performance of individual
animals varies from one laboratory trial to the next. The presence
of intraindividual variation, coupled with relatively small sample
sizes per individual, guarantees that each individual’s performance
is estimated with some error, whether individual maximum or mean
values are used for statistical analysis. In particular, maximum

performance will always be underestimated, as individuals will
rarely achieve their true maximum in a small number of laboratory
trials. This problem was highlighted by Losos et al. (Losos et al.,
2002), who also described the related problem of individual subjects
who consistently perform submaximally in the laboratory.

In this study we examined how intraindividual variation and per
individual sample size affect the statistical estimation of
performance. To obtain an example data set we measured burst speed
performance in western fence lizards (Sceloporus occidentalis) 20
times per individual at 20°C and 35°C. We describe the intra- and
interindividual statistical distributions of performance, and estimate
overall repeatability and whether it varies over time. We then ran
statistical sampling experiments that simulated laboratory studies
in which speed was measured 1, 2, 3, … 20 times for each individual,
to evaluate how the accuracy and precision of performance estimates
vary with per individual sample size. This analysis addressed several
goals.

1. To quantify how observed maximum performance increases
as a function of the number of trials per individual.

2. To determine the effect of within-individual variability on the
above relationship, by performing the analysis on data sets adjusted
to have increased and decreased variability.

3. To determine the effect of within-individual variability and
number of trials on the estimated correlation between two traits.
Although our study used speed measured at two different
temperatures as the two traits, this analysis is more broadly
applicable to any correlational analysis of two traits, such as whether
performance covaries with a morphological or biochemical trait.
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SUMMARY
Researchers often estimate the performance capabilities of animals using a small number of trials per individual. This procedure
inevitably underestimates maximum performance, but few studies have examined the magnitude of this effect. In this study we
explored the effects of intraindividual variation and individual sample size on the estimation of locomotor performance
parameters. We measured sprint speed of the lizard Sceloporus occidentalis at two temperatures (20°C and 35°C), obtaining 20
measurements per individual. Speed did not vary temporally, indicating no training or fatigue effects. About 50% of the overall
variation in speed at each temperature was due to intraindividual variation. While speed was repeatable, repeatability decreased
slightly with increasing separation between trials. Speeds at 20°C and 35°C were positively correlated, indicating repeatability
across temperatures as well. We performed statistical sampling experiments in which we randomly drew a subset of each
individualʼs full set of 20 trials. As expected, the sampleʼs maximum speed increased with the number of trials per individual; for
example, five trials yielded an estimate averaging 89% of the true maximum. The number of trials also influenced the sample
correlation between mean speeds at 20°C and 35°C; for example, five trials yielded a correlation coefficient averaging 90% of the
true correlation. Therefore, intraindividual variation caused underestimation of maximal speed and the correlation between
speeds across temperatures. These biases declined as the number of trials per individual increased, and depended on the
magnitude of intraindividual variation, as illustrated by running sampling experiments that used modified data sets.

Key words: performance, correlation, intraindividual variation, repeatability, lizard, burst speed, bias, maximum.
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MATERIALS AND METHODS
Study organism

The western fence lizard (Sceloporus occidentalis Baird and Girard)
is a small diurnal insectivorous lizard that lives in a wide variety
of habitats in the western United States (Stebbins, 2003). It is a
classic sit-and-wait predator with limited endurance capacity but
can run swiftly over short distances (Bennett and Gleeson, 1976;
Gleeson, 1979; Schall and Sarni, 1987). Locomotor performance
of S. occidentalis has been studied in diverse contexts (e.g. Bennett,
1980; Bennett and Gleeson, 1976; Garland et al., 1990; Gleeson,
1979; Holem et al., 2006; Marsh and Bennett, 1986; Schall et al.,
1982; Sinervo and Adolph, 1989; Sinervo and Huey, 1990; Sinervo
et al., 1991; Sinervo and Losos, 1991; Tsuji et al., 1989; van Berkum,
1988; van Berkum and Tsuji, 1987; van Berkum et al., 1989).

Collection and housing of subjects
We collected adult and subadult male lizards (N=21) from two sites
in Los Angeles County, California, in June 2004: Table·Mountain
(2·km northwest of Wrightwood) and Joshua·(8 km east of
Valyermo). Adolph (Adolph, 1990) and Sinervo and Adolph
(Sinervo and Adolph, 1994) provide further information on the
ecology of S. occidentalis at these sites. Lizard body mass averaged
10.1·g (range 5.6–15.2·g) and snout–vent length averaged 68.1·mm
(range 60–79·mm). Lizards were held in the laboratory individually
in 38·l terraria with an incandescent light bulb (75·W) on 8·h per
day. The air temperature of the room averaged 20.5°C at night, and
during the day the light permitted the lizards to attain their preferred
body temperature of 35°C. Lizards were fed crickets two to four
times per week.

Measurement of sprint speed
We measured sprint speed following the procedures of Hertz et al.
(Hertz et al., 1983). Prior to each run, lizards were held individually
in 1·l plastic containers within a constant-temperature chamber at
either 35°C or 20°C for at least 1·h; 35°C is the optimal temperature
for sprint locomotion in this species, and is approximately the mean
body temperature of field-active animals, whereas 20°C is at the
lower end of the field body temperature distribution for these
populations (Bennett, 1980; Marsh and Bennett, 1986; van Berkum,
1988; Adolph, 1990). We removed each lizard from the chamber
and chased it along a horizontal racetrack (2.5·m long�28·cm wide)
that had a rough particle board surface. Photocells spaced every
0.25·m were connected to a computer that recorded elapsed times
(Huey et al., 1981; Hertz et al., 1983). We gave each lizard five
training runs several days prior to the experiment (Bennett, 1980).
Trials were conducted between 10:00·h and 17:00·h. Each lizard
ran five trials per day, with at least 1·h rest in the environmental
chamber between trials. The fastest 0.75·m interval was used as the
lizard’s speed for a given trial. Lizards were run in haphazard order
for each trial on a given day. We weighed and measured (snout–vent
length) each lizard on the first day of racing. Lizards were given
1–2·days of rest between each set of five trials. All trials at 35°C
were run first, followed by the trials at 20°C. On one trial day at
35°C, three subjects were run six times to replace data lost from
previous runs.

Repeatability
We assessed the repeatability of sprint performance in several ways.
Overall repeatability of speed within each of the two temperatures
was examined by estimating intraclass correlation coefficients (ri)
following Haggard (Haggard, 1958) (see also Sokal and Rohlf, 1981;
Lessells and Boag, 1987). Standard errors for intraclass correlation

coefficients were calculated following Becker (Becker, 1984). We
also calculated pairwise Pearson product-moment correlations
between mean, median, maximum and minimum speed both within
and across temperatures as additional measures of individual
consistency and repeatability.

We tested for temporal dependence of repeatability within each
temperature by calculating all pairwise correlations rij between
speeds on trials i and j, where i�j and both i and j range from 1 to
20. We tested the hypothesis that the magnitude of rij should decrease
with the separation between trials (�i–j�); i.e. trials that immediately
follow one another should have more similar speeds than widely
spaced trials (T. Garland, Jr, personal communication). We used
Mantel tests (Mantel, 1967) to assess the statistical significance of
the relationship between pairwise correlation of speeds and the
spacing between trials because the number of pairwise correlations
(190) exceeded the number of independent trials (20). We wrote a
Matlab program using Manly’s (Manly, 1986) algorithm to perform
the Mantel tests.

Statistical sampling experiments
To determine the effects of sample size (number of trials per
individual) on estimates of performance parameters, we performed
a sampling experiment in which we randomly chose Ntrials speed
measurements from each individual (without replacement), where
Ntrials ranged from 1 to 20. We chose the maximum and mean speeds
from the random sample for each individual as performance
estimates. This procedure was repeated 1000 times for each value
of Ntrials at each temperature, using programs written in Matlab. This
sampling experiment allowed us to quantify the effect of Ntrials on
the precision and accuracy of estimating maximum speed, mean
speed and the correlation between speeds at the two temperatures.

We used the same procedure to evaluate how the magnitude of
intraindividual variation influences the sampling distribution of
sprint speed statistics. To do this, we modified the data set by
multiplying each individual’s sprint speed residuals by a constant
factor and adding these rescaled residuals back to the individual’s
mean sprint speed, thereby changing the within-individual variance
but not the among-individual variance. We adjusted the data to
achieve repeatabilities (ri) of 0.25, 0.50 and 0.75 (for examining
correlations of mean speeds across temperatures) and to achieve
mean within-individual coefficients of variation (CV) of 10%, 20%
and 30% (for examining maximum speed). We then repeated the
statistical sampling experiments using these modified data sets.
Mathieu et al. (Mathieu et al., 1981) performed a conceptually
similar study involving the effects of measurement error and
sampling variation in stereological analysis of microscope images.

RESULTS
Intra- and interindividual variation in sprint performance

Mean speed did not increase or decrease with time at either 35°C
(linear regression, r2=0.103, P=0.168) or 20°C (r2=0.023, P=0.526;
Fig.·1). The trial number on which a lizard attained its maximum
speed ranged from 1 to 20 at both 35°C and 20°C; the median trial
number at which maximum speed was attained was 6 at 35°C and
9 at 20°C. Thus, lizards did not show evidence of either fatigue or
training during this study.

Both maximum and mean speeds were greater at 35°C than at
20°C (repeated measures ANOVA; Table·1, Fig.·1). Maximum
speed at 20°C was 72% of maximum speed at 35°C. Mean speed
at 20°C was 72% of maximum speed at 20°C, and mean speed at
35°C was 73% of maximum speed at 35°C. Neither maximum nor
mean speed differed between lizards from the Joshua and Table
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Mountain populations (repeated measures ANOVA, P>0.70), and
neither maximum nor mean speed covaried with body mass
(regression, P>0.10).

Lizards showed substantial interindividual and intraindividual
variation in speed at both temperatures (Fig.·2). Maximum speed
of individual subjects ranged from 1.34 to 2.27·m·s–1 at 20°C and
from 1.70 to 3.41·m·s–1 at 35°C. Likewise, mean speed of individual
subjects ranged from 0.56 to 1.91·m·s–1 at 20°C and from 1.36 to
2.88·m·s–1 at 35°C. Two individuals were unusually fast outliers at
35°C (Figs·2, 3). CV for speeds of individual lizards were similar
at the two temperatures: the mean CV was 22.8% at 20°C (range
10.0–56.2%) and mean CV was 20.3% at 35°C (range 13.0–26.6%).
The distribution of residual speeds around each subject’s average
speed did not differ significantly from normality (Ryan–Joiner tests).
A randomization test (1000 trials; Matlab program) revealed no
significant variation among individuals in the magnitude of residual
speeds either at 20°C (P=0.815) or at 35°C (P=0.579). The symmetry
of residual speeds is also reflected by the fact that median and mean
speeds for each individual were nearly identical at each temperature
(Fig.·3).

Speed was repeatable among trials within each temperature:
intraclass correlation coefficients (±s.e.) were 0.559 (±0.083) for
speed at 20°C and 0.502 (±0.085) at 35°C (ANOVA, using all 20
trials per individual; P<0.0001 for each temperature). Thus, the total
variance in speed was approximately equally partitioned among and
within individuals. Repeatability in sprint performance both within
and between temperatures was also indicated by significant positive
correlations between minimum, maximum, median and mean speeds
among individuals (Table·2). Correlations involving measurements
of speed at two different temperatures were weaker than correlations
involving speeds at the same temperature, and correlations involving

S. C. Adolph and T. Pickering

means or medians were typically stronger than those involving
maxima or minima (Table·2).

The magnitude of the pairwise correlations between sprint speeds
for two different trials decreased with increasing separation between
the trials (Fig.·4). These declines were significant for both 20°C
and 35°C (Mantel tests, P=0.010 and P=0.002, respectively). The
regression equations for these relationships predicted a decrease in
the pairwise correlation from 0.62 for successive trials to 0.50 for
trial 1 vs trial 20 at 20°C, and from 0.60 for successive trials to 0.35
for trial 1 vs trial 20 at 35°C. Thus, repeatability of sprint speed
declined with time over a 1–2·week time frame. However, separation
between trials explained relatively little of the overall variation in
pairwise correlations (r2=0.123 for 35°C and r2=0.058 for 20°C).
Mean pairwise correlations (±s.d.) were 0.579 (±0.128) for 20°C
and 0.516 (±0.176) for 35°C.

The standard deviation of speed for each individual was
negatively correlated with individual mean speed at 20°C (r=–0.442,
P=0.043) but positively correlated with mean speed at 35°C
(r=0.565, P=0.007). The within-individual standard deviations of
speed at 35°C and 20°C were not correlated (r=0.153, P=0.514).
Likewise, the within-individual CV of speed at 35°C and 20°C were
not correlated (r=0.331, P=0.144). Thus, while speed itself was
repeatable across the two test temperatures, the amount of within-
individual variability in speed was not.
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Fig.·1. Sprint speed (m·s–1 over 75·cm; mean ± s.e.m.; N=21) vs trial
number in the western fence lizard Sceloporus occidentalis. Mean speed
did not increase or decrease linearly with time at either temperature (see
Results).

Table 1. Maximum and mean burst speeds of individual western
fence lizards (Sceloporus occidentalis) at 35°C and 20°C

35°C 20°C

Maximum speed (m·s–1) 2.46±0.43 1.77±0.23
Mean speed (m·s–1) 1.79±0.38 1.27±0.31

Values are means + s.d., measured over 75·cm. N=21 individuals.
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Fig.·2. Inter- and intraindividual variation in burst sprint speeds of western
fence lizards (Sceloporus occidentalis) at 35°C and 20°C. Each point
represents the mean (±s.d.) of 20 trials for a single individual. The same
individuals (N=21) are shown for each temperature, but some individual
rankings differed between temperatures.
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Statistical sampling and the estimation of performance
parameters

Statistical resampling of the data sets showed that estimates of
maximum sprint speed were biased when small samples were used:
all values of Ntrials<20 yielded underestimates on average (Fig.·5).
Both the magnitude of the bias and variability of the estimate
decreased as Ntrials increased (Fig.·5), and the form of this
relationship was virtually identical for the 20°C and 35°C data. For
example, choosing the fastest speed of two trials per individual
would underestimate maximum performance by 20% (on average),
whereas using five trials per individual would reduce this bias to
11%.

In contrast, increasing Ntrials did not provide a more accurate
estimation of mean sprint speed. Overall, the estimated mean speed
(average of all sample means) remained the same (71–72% of
maximum speed) for all values of Ntrials. Increasing Ntrials also
increased the precision of estimating both mean and maximum
speeds.

The resampling experiment also showed that the correlation
between individual mean speed at 20°C and individual mean speed
at 35°C was underestimated; the magnitude of this bias was inversely
related to Ntrials (Fig.·6). For example, the correlation between mean
speeds at 20°C and 35°C averaged 0.47 for Ntrials=2 and increased
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to 0.59 for Ntrials=5. The sample variance of the estimated correlation
coefficient was also much higher for lower values of Ntrials (Fig.·6).
The correlation between maximum speeds at 20°C and 35°C likewise
increased as a function of Ntrials (Fig.·6). The correlation between
maximum speeds was lower than the correlation between mean
speeds for all values of Ntrials except 1 (in which case the maximum
and mean speed for an individual were the same).

Magnitude of intraindividual variation and the estimation of
performance parameters

The manipulated data sets illustrated how the amount of
intraindividual variation affects the bias in estimating performance
parameters. Maximum sprint performance was biased by the greatest
amount (for a given value of Ntrials) when the CV for each individual
averaged 30%, and least biased when average CV was adjusted to
10% (Fig.·7A). Similarly, the bias in the estimated correlation
between mean speed at 20°C and mean speed at 35°C was greatest
when repeatability was low (ri=0.25), and bias decreased as
repeatability increased (Fig.·7B).

S. C. Adolph and T. Pickering

DISCUSSION
Repeatability and bias in estimating

performance parameters
Burst sprint speed in S. occidentalis was
repeatable both within and between
temperatures. Statistically significant
repeatability of locomotor performance has
been demonstrated in numerous other
species (e.g. Bennett, 1980; Bennett, 1987;
Tolley et al., 1983; Huey and Hertz, 1984;
Garland, 1985; Huey and Dunham, 1987;
Jayne and Bennett, 1990; Austin and
Shaffer, 1992; Reidy et al., 2000).
Repeatability is considered to set the upper
bound for heritability of quantitative traits,
and therefore indicates the potential for
traits to respond to directional selection

(Falconer and Mackay, 1997) (but see Dohm, 2002; Nespolo and
Franco, 2007). Previous studies have documented both repeatability
and broad-sense heritability of sprint speed in S. occidentalis from

Table 2. Pairwise correlations between individual maximum, minimum, median and mean
sprint speeds among Sceloporus occidentalis lizards

35°C 20°C

Maximum Minimum Median Mean Maximum Minimum Median Mean

35°C
Maximum 1.000 0.622 0.802 0.841 0.589 0.552 0.695 0.672
Minimum 1.000 0.627 0.673 0.444 0.479 0.583 0.571
Median 1.000 0.990 0.500 0.461 0.644 0.604
Mean 1.000 0.556 0.514 0.689 0.657

20°C
Maximum 1.000 0.765 0.805 0.844
Minimum 1.000 0.820 0.871
Median 1.000 0.988
Mean 1.000

N=21 subjects tested at 35°C and 20°C (20 trials per subject at each temperature).

Fig.·6. Estimated correlations between individual mean speeds at 20°C and
35°C (filled circles) and individual maximum speeds at 20°C and 35°C
(open circles) in the lizard Sceloporus occidentalis, as a function of the
number of trials sampled per individual. Points show the mean correlation
of 1000 independently drawn samples from the empirical distribution of
speeds. Upper error bars indicate the 75th percentile of the distribution of
correlations between means, and lower error bars indicate the 25th
percentile of the distribution of correlations between maxima. The
corresponding error bars are nearly symmetrical but are omitted for clarity.
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Washington state (van Berkum and Tsuji, 1987; Tsuji et al., 1989;
van Berkum et al., 1989). Bennett (Bennett, 1980) found that
individual differences in sprint speed in S. occidentalis from southern
California were consistent across temperatures. Our study confirms
these earlier findings for this species.

However, a trait can be significantly repeatable and still exhibit
substantial intraindividual variation. Intraindividual variation
comprises about 50% of the overall phenotypic variation in sprint
performance of fence lizards at both 20°C and 35°C. In contrast to
interindividual variation, intraindividual variation is not informative
for researchers; it is functionally equivalent to measurement error.
Nevertheless, it is important to quantify intraindividual variation
because it leads to biased estimates of maximum performance and
of the correlations between traits. These biases can be substantial
for the sample sizes often used in locomotion studies.

Studies of sprint locomotion in lizards typically use from two to
five trials per individual per condition (e.g. different temperatures,
slopes, perch diameters). If the magnitude of intraindividual variation
is similar for different species, our analysis indicates that published
maximum performance values are underestimated by 10–20% on
average. This bias may not be a problem in some contexts; for
example, the estimated optimal temperature for sprint performance
would probably not be affected much. However, comparisons of
maximum performance between species or populations could be
affected if either the number of trials per individual or the amount
of intraindividual variation differed between the samples. Therefore,
we recommend that researchers report average CV for individuals
in addition to reporting Ntrials; future quantitative analyses may
provide correction factors that rely on this information.

Few studies report information about the absolute amount of
intraindividual variation in speed in lizards or other animals. One
noteworthy exception is Bennett’s (Bennett, 1980) study of burst
sprint speed in S. occidentalis and several other lizard species
[Aspidoscelis (Cnemidophorus) murinus, Dipsosaurus dorsalis,
Plestiodon (Eumeces) obsoletus, Elgaria (Gerrhonotus)
multicarinatus and Uma inornata]. In each of these six species the
maximum speed from three trials was approximately 15% higher
than the average speed. Our results for S. occidentalis were very
similar: the maximum speed from three trials averaged 17.6% higher
than the mean speed for 35°C and 17.9% higher for 20°C. This
suggests that the CV of speeds for each individual is similar for
these six lizard species, which represent six different families.
Consequently, the statistical properties of the estimated maximum
sprint speed (Fig.·5) might be similar for diverse groups of lizards.

Fuiman and Cowan (Fuiman and Cowan, 2003) reported averages
of individual CV for a variety of anti-predator performance traits
in larval fish (Sciaenops ocellatus). Average CV varied widely
among traits, ranging from 14.5% for visual response latency score
to 91.3% for acoustic response score. Their results illustrate that
CV of performance variables can be quite high, underscoring the
importance of using multiple trials for estimating maximum values.
Interestingly, routine swimming speed in S. ocellatus has a high
CV (38.7%) but also a high repeatability (ri=0.86), reflecting a large
among-individual variance.

Statistical remedies for bias in estimating performance
parameters

The underestimation of correlation coefficients (Fig.·6) due to
intraindividual variation (or measurement error) has long been
known to statisticians (Spearman, 1904; Fuller, 1987), but is not well
known in organismal biology. There is a simple estimator that corrects
for this bias, as long as the repeatabilities for both traits are known

(Adolph and Hardin, 2007). Using this estimator yields an estimate
of r=0.686 for the correlation between mean speeds at 20°C and
35°C, which is slightly higher than the correlation between mean
speeds obtained using all 20 samples for each individual (0.657;
Table·2). This indicates that even a large per individual sample will
underestimate the correlation coefficient on average.

Attenuation of correlation coefficients can affect our ability to
detect functional relationships between traits. For example, a
number of studies have investigated whether individual variation
in muscle fiber morphology, enzyme activity, and other lower-level
physiological and biochemical traits is correlated with individual
variation in whole-organism locomotor performance (Garland,
1984; Gleeson and Harrison, 1988; Bennett et al., 1989; Husak et
al., 2006). Attenuation due to within-individual variation in either
or both traits could reduce the sample correlation coefficient to a
non-significant value. The degree of attenuation can be reduced by
using the mean of multiple measurements for each individual, which
has dual benefits: it increases statistical power and it permits an
unbiased estimate of the correlation (Adolph and Hardin, 2007).

Whereas bias in correlation coefficients involving individual mean
values is straightforward to correct, we do not know of a simple
statistical remedy for the underestimation of maximal performance
per se, or of the correlations involving maximum performance
values. Statistical distributions of maxima and minima are generally
more complicated than are distributions of mean values (Gumbel,
1958; Gaines and Denny, 1993), and are likely to differ among
organisms and due to laboratory procedures.

Temporal changes in repeatability
While burst speed was significantly repeatable both within and
between temperatures, the magnitude of repeatability declined with
the temporal separation between trials (Fig.·4). Because we measured
sprint speed over a relatively short time span (several weeks), it is
unlikely that the decline in repeatability was due to changes in the
physiological factors affecting speed, particularly given the lack of
a decline in speed during this study (Fig.·1). Instead, it seems more
likely that temporal fluctuations in labile behavioral factors such as
motivation are responsible for the decline in repeatability over time.
For example, two successive races may be more likely to be run
under similar motivational levels, contributing to the greater
similarity of sprint speeds measured close together in time.

Other researchers have reported decreases in repeatability of
locomotor performance over time, particularly when measurements
were separated by time spans of several months to several years
(van Berkum et al., 1989; Shaffer et al., 1991; Watkins, 1997;
Elnitsky and Claussen, 2006). For example, Jayne and Bennett
(Jayne and Bennett, 1990) found that the magnitude of correlations
involving speed and endurance in garter snakes decreased with
increasing time separating the measurements. Similarly, Austin and
Shaffer (Austin and Shaffer, 1992) found that repeatability of speed
in tiger salamanders was lower over a 15·month period than over
shorter time intervals. However, long-term declines in repeatability
are not inevitable for locomotor performance or other physiological
traits, as several other studies illustrate (Rønning et al., 2005; Vézina
and Williams, 2005; Elnitzsky and Claussen, 2006; Nespolo and
Franco, 2007).

Implications of intraindividual variability for performance in
the field

Several recent studies have combined laboratory and field
measurements of locomotor performance by lizards (Irschick and
Garland, 2001; Braña, 2003; Irschick, 2003; Irschick et al., 2005;
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Husak, 2006; Husak and Fox, 2006). These studies have shown that
individual lizards in the field often do not use their maximum
locomotor capacity during activities such as predator avoidance and
foraging. These findings highlight the importance of accurately
estimating maximum sprint performance in the laboratory, because
realized performances in the field are evaluated by direct comparison
to laboratory values. Bias and lack of precision in estimating
laboratory performance values will result in reduced statistical power
for detecting interesting patterns that involve individual field-to-
laboratory comparisons.

Exceptional individual performances
Two individuals at 35°C were substantially faster than the rest of
the sample (Figs·2 and 3). The mean speeds of each of these two
individuals were 2.5 and 2.9 s.d. greater than the population mean
speed at 35°C. These two individuals were likewise among the
fastest individuals at 20°C, ranking 2nd and 6th out of 21 individuals.
However, we did not observe any unusually fast outliers at 20°C
(Figs·2 and 3). Other studies have sometimes identified unusually
strong performances by a few individuals in a sample (Bennett and
Huey, 1990). For example, Huey et al. (Huey et al., 1990) measured
endurance times in two Sceloporus merriami females that exceeded
the population mean by more than 6·s.d. The physiological or
behavioral bases for these exceptional performances by lizards are
unknown. Intriguingly, Garland et al. (Garland et al., 2002) have
discovered a discrete polymorphism in leg muscle structure and
function within artificially selected mouse populations. These two
muscle types differ in their biochemistry and contractile properties
and exhibit a trade-off between endurance and power. The discrete
polymorphism evidently results from variation at a single genetic
locus (Garland et al., 2002; Houle-Leroy et al., 2003). Single-locus
effects on muscle structure and running performance have also been
described in whippets (Mosher et al., 2007).

In lizards, muscle fiber-type composition varies substantially
among species, and is correlated interspecifically with locomotor
performance capability [burst speed vs endurance (Bonine et al.,
2001; Bonine et al., 2005)]. Similarly, Gleeson and Harrison
(Gleeson and Harrison, 1988) found significant negative correlations
between some measurements of muscle fiber size and sprint speed
among individual desert iguanas, suggesting a possible causal
relationship. Although Gleeson and Harrison (Gleeson and Harrison,
1988) did not mention exceptional individual performances, they
did report approximately twofold variation in speed among
individuals, which is typical for lizards in general. Populations that
reveal exceptional individual performances, such as we observed
in two individuals at 35°C, might serve as promising candidates for
exploring whether genetic variants with discretely different
locomotor capabilities exist in lizards, and for detecting discrete
differences in morphological or biochemical traits associated with
performance.

Whereas two individuals at 35°C were exceptionally fast runners,
we did not observe any unusually slow individuals that were clearly
performing submaximally. Instead, lizards had similar magnitudes
of within-individual variation in speed, and the distribution of mean
speeds among individuals did not show any discontinuities or outliers
that would indicate submaximally performing individuals (Losos et
al., 2002).

CONCLUSIONS
Intraindividual variation, especially when combined with small per
individual sample sizes, leads to a biased estimation of maximum
performance and of the correlation between two traits. Our analyses
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illustrate how these biases are affected by the per individual sample
size and by the magnitude of intraindividual variation. Biased
correlations between individual mean values of two performance
traits can be corrected if the within- and among-individual
components of variance are known. However, unbiased estimators
for maximum performance, and for correlations involving maximum
performance, have not yet been devised. Future studies that describe
the statistical distributions of individual performance data will help
researchers develop estimation procedures that correct for bias.
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