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ABSTRACT
Objective Alcoholic steatohepatitis is a life-threatening
condition with short-term mortality up to 40%. It
features hepatic neutrophil infiltration and blood
neutrophilia, and may evolve from ethanol-induced
breakdown of the enteric barrier and consequent
bacteraemia. Signalling through CXCR1/2 G-protein-
coupled-receptors (GPCRs), the interleukin (IL)-8
receptors, is critical for the recruitment and activation of
neutrophils. We have developed short lipopeptides
(pepducins), which inhibit post-ligand GPCR activation
precisely targeting individual GPCRs.
Design Experimental alcoholic liver disease was
induced by administering alcohol and a Lieber–DeCarli
high-fat diet. CXCR1/2 GPCRs were blocked via
pepducins either from onset of the experiment or after
disease was fully established. Hepatic inflammatory
infiltration, hepatocyte lipid accumulation and overall
survival were assessed as primary outcome parameters.
Neutrophil activation was assessed by myeloperoxidase
activity and liver cell damage by aspartate
aminotransferase and alanine aminotransferase plasma
levels. Chemotaxis assays were performed to identify
chemoattractant signals derived from alcohol-exposed
hepatocytes.
Results Here, we show that experimental alcoholic liver
disease is driven by CXCR1/2-dependent activation of
neutrophils. CXCR1/2-specific pepducins not only
protected mice from liver inflammation, weight loss and
mortality associated with experimental alcoholic liver
disease, but therapeutic administration cured disease
and prevented further mortality in fully established
disease. Hepatic neutrophil infiltration and triglyceride
accumulation was abrogated by CXCR1/2 blockade.
Moreover, CXCL-1 plasma levels were decreased with
the pepducin therapy as was the transcription of hepatic
IL-1β mRNA.
Conclusions We propose that high circulating IL-8 in
human alcoholic hepatitis may cause pathogenic
overzealous neutrophil activation, and therapeutic
blockade via pepducins merits clinical study.

OBJECTIVE
Morbidity and mortality due to excessive alcohol
consumption is a major health problem worldwide
affecting millions of people.1 The risk of
alcohol-induced liver disease (ALD) increases pro-
portionately with consumption, causing a spectrum
of liver diseases ranging from steatosis to terminal

liver disease and cirrhosis.2 At 6-month mortality
rates up to 50%, the acutely deadliest manifestation
of ALD is severe alcoholic hepatitis (AH).2 AH is
estimated to affect 10–35% of heavy drinkers at
some point in time.3 Severe AH exhibits a very
specific presentation with hepatocyte steatosis, neu-
trophilic liver inflammation and necrosis, a charac-
teristic peripheral blood neutrophilia, and manifests
as liver failure including thrombocytopenia and
coagulation disorders.4 Patients surviving severe
AH have a high risk of developing fibrosis and
cirrhosis, in turn increasing risk for hepatocellular
carcinoma.3 No therapies exist that improve long-
term survival of AH.5 6 On this dire background, it
has indeed been suggested that patients with severe
AH should be routinely randomised into experi-
mental trials.7

A common working model suggests that ethanol
might induce inflammatory chemokines and cyto-
kines via generation of reactive oxygen species and
acetaldehydes,8–10 which may impact on endotoxin
clearance in the liver. This, along with intestinal
barrier dysfunction consequent to chronic alcohol

Significance of this study

What is already known on this subject?
▸ Neutrophilia in alcoholic hepatitis (AH) is

associated with worse outcome.
▸ Expression of chemokines is massively

increased in human AH.
▸ No therapies improving long-time survival exist.

What are the new findings?
▸ Blocking CXCR1/2 receptors increases survival

in a murine model of alcoholic liver injury.
▸ CXCR1/2 pepducins revert steatosis and liver

inflammation.
▸ Alcohol-induced liver injury is neutrophil

mediated.
▸ CXCR1/2 pepducins can be used

therapeutically.

How might it impact on clinical practice in
the foreseeable future?
▸ The treatment of patients with acute alcoholic

liver disease with CXCR1/2 blocking pepducins
deserves evaluation in clinical trials.
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exposure,11 leads to systemic endotoxaemia, whose extent
indeed correlates with progression of liver disease,12–14 estab-
lishing a vicious circle of pro-inflammatory signalling.

Expression of chemokines that are involved in neutrophil
recruitment and activation is massively increased in human
AH.15 16 Worse prognosis associates with blood neutrophilia,2

and elevated mRNA expression of interleukin (IL)-8 (CXCL8),
CXCL5, Gro-γ (CXCL3) and CXCL6, all ligands of CXCR1/
CXCR2 chemokine receptors.15 17 18 Multivariate analysis
revealed hepatic IL-8 protein levels as an independent predictor
of 90-day mortality in AH.15 Neutrophils release an array of
bactericidal molecules that might cause tissue destruction.19

Despite these associative data, a causal role of neutrophils and/
or CXCR1/2 signalling in severe AH has not yet been
established.3 5 14

CXCR1 and CXCR2 are G protein-coupled receptors
(GPCRs).20 GPCRs consist of seven transmembrane domains
joined by three intracellular loops and a C-terminal domain
(referred to as i1-i4) that are important for interaction with and
activation of G proteins involved in signal transduction.21

‘Pepducins’ are short peptides coupled to a lipid moiety that can
be designed as agonists or antagonists with precise specificity in
vitro and in vivo for a given GPCR.22–26 Pepducins integrate
into the inner plasma membrane via a flip-flop mechanism and
affect GPCR-dependent G-protein activation.27–29 We have
reported pepducin ‘x1/2pal-i1’, specific for CXCR1 and
CXCR2, which reverses established experimental systemic
inflammatory response syndrome by inhibiting neutrophil acti-
vation.25 x1/2pal-i1 also abolishes tumour growth in a model of
ovarian cancer30 and inhibits adenoma formation in Apcmin/+

mice.31

In an experimental model that phenocopies human AH, here
we report that CXCR1/2 blockade cures established steatohepa-
titis, identifying a critical role of CXCR1/2 signalling and neu-
trophils in propagating this disease.

DESIGN
Pepducins directed against CXCR1/2 (x1/2pal-i1) and a
nonsense-scrambled pepducin (scram-i1) were synthesised with
carboxy-terminal amides by standard fMOC solid-phase
methods at the Tufts University Core Facility (Tufts University,
Boston, Massachusetts, USA) or purchased from Peptide 2.0
(Chantilly, Virginia, USA). Lieber–DeCarli diet (LDC) was pur-
chased from Dyets (Bethlehem, Pennsylvania, USA). The IL-8
ELISA was from R&D systems, the SYBR-green PCR mix was
purchased from Eurogentec (Southampton, UK). Naphthol
AS-D chloracetate, the myeloperoxidase (MPO) assay kit and all
other chemicals used in this study were purchased from Sigma
Aldrich (St Louis, Missouri, USA). Oil-red-O was from Amresco
(Solon, Ohio, USA); Hep3B and HepG2 cells were purchased
from ATCC (Manassas, Virginia, USA). Cell culture media were
from Gibco Life Technologies (Grand Island, New York, USA).

Animal model of alcoholic steatohepatitis
Mouse protocols were approved by the relevant authorities and
all procedures were performed in accordance with the institu-
tional guidelines. Also, 5–6-week-old female C57Bl/6 mice were
purchased from Charles River Laboratories. The animals were
housed under specific pathogen-free conditions. Animals were
allowed to acclimatise for 7–10 days before the start of the
experiments. Mice were subjected to a high-fat LDC (44% fat-
derived, 16% protein-derived and 40% carbohydrate or
ethanol-derived calories).32 Ethanol was introduced after 5 days,
starting 2% (v/v) ethanol, and was then increased every other

day to a final concentration of 6.5% (v/v) ethanol on the 10th
day of the experiment. Control animals received LDC without
any alcohol.32 As outlined in figure 1, we started to inject the
x1/2pal-i1 pepducin (2.5 mg/kg, every other day) either con-
comitantly with the introduction of ethanol (day 5) in a pre-
ventative mode or after mice had been on alcohol containing
LDC for 4 weeks. The latter therapeutically treated mice were
injected with x1/2pal-i1 (5 mg/kg) every day for the remaining
7 days of the experiment. The vehicle (10% dimethyl sulfoxide
(DMSO)) and was injected as a control. Mice received one
single low-dose injection of endotoxin (2.5 mg/kg) intraperito-
neally 24 h before sacrificing.32 Human alcoholic steatohepatitis
(ASH) is characterised by high blood endotoxin levels, which
cannot be observed in the murine model. Upon completion of
the study, the animals’ weight was taken before terminal anaes-
thesia with ketamine/xylazine. Cardiac punctures were per-
formed to collect blood. Livers were weighed and either
embedded in paraffin, frozen or prepared for RNA extraction,
triglyceride extraction or MPO assessment.

Measurement of serum and liver cytokine levels
Serum CXCL8 levels were measured by ELISA. Liver cytokine
mRNA levels were measured by real-time quantitative
SYBR-green PCR. Primers were designed as follows: tumour
necrosis factor (TNF)α: 50-tgggagtagacaaggtacaaccc-30 (forward)
and 50-catcttctcaaaattcgagtgacaa-30 (reverse). CXCL1: 50-ctgggatt
cacctcaagaacatc-30 (forward) and 50-cagggtcaaggcaagcctc-30

(reverse), IL-1β 50-tgaaaacacagaagtaacgtccg-30(forward) and
50-cccaggaggaaattgtaatggga-30.

MPO was extracted from liver tissue and measured by ELISA.
Aspartate aminotransferase (AST) and alanine aminotransferase
(ALT) were measured by a colorimetric enzyme activity assay
(Sigma Aldrich).

Histological assessments of murine liver tissue
Liver sections were embedded in paraffin and cut into
5–15-mm-thick slices by subsequent staining with H&E. Liver
morphology was then assessed microscopically. To compare the
numbers of neutrophils in the livers of pepducin-treated versus
vehicle-treated animals, paraffin was removed and slides were
stained with naphthol AS-D chloroacetate (Sigma Aldrich).33

Neutrophil numbers were counted in four representative micro-
scopic fields from 10 individual mice per group.

For the assessment of liver tissue lipid content, frozen sections
were stained with Oil-red-O (Sigma Aldrich). Accumulated lipid
appears as bright red droplets in the liver tissue and the amount
of these bright red areas was then compared microscopically.

Measurement of liver triglycerides from liver tissue
The lipid liver fraction was extracted by the Folch method.34

Briefly, 100 mg of liver tissue were homogenised in the presence
of 3:1 chloroform:methanol. After filtration and two washing
steps, the lipid extracts were analysed by a photometric assay
(Roche/Hitachi).

Immunoblotting of caspase-1
Snap frozen liver samples were homogenised and separated by
12% sodium dodecyl sulfate polyacrylamide gel electrophoresis.
After blotting, membranes were probed by a polyclonal
anti-caspase-1 p20 antibody (Santa Cruz, clone M19).

In vitro neutrophil chemotaxis
Human neutrophils were obtained from EDTA anticoagulated
blood of healthy volunteers. After density gradient
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centrifugation, remaining red blood cells were lysed. Cell pre-
parations typically yielded >95% neutrophils with almost 100%
viability.

Neutrophil migration was measured using a 48-well micro
chemotaxis chamber (Neuroprobe, Gaithersburg, Maryland,
USA). Cells were allowed to migrate for 30 min into a 5 mm
pore-sized nitrocellulose membrane and were stained subse-
quently. Migration depth was quantified microscopically by
evaluating the difference between cells that did not migrate and
the leading front of neutrophils.

Cell culture
Hep3b cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) cell culture media containing 10% fetal
bovine serum (FBS). HepG2 cells were cultured in Roswell Park
Memorial Institute medium containing 10% FBS. For some
experiments, Hep3b cells were stimulated with ethanol or
TNFα. IL-8 levels were measured in the supernatants of Hep3b
cells and subjected to chemotaxis assays. To indicate

generalisability, some of the experiments were repeated in
HepG2 cells. To assess potential cytotoxicity of pepducins on
hepatocytes, we performed MTT tests. Hep3B cells were incu-
bated with DMEM/0.2% FBS for 48 h in 96-well plates.
Thereafter, cells were incubated with different concentrations of
the x1/2pal-i1 pepducin, control medium or doxorubicin IC50

(300 nM) for another 48 h. MTT (10 mL/well) was added and
incubated for another 5 h. After the addition of 100 mL DMSO,
the extinction was measured photometrically (wavelength
550 nm).

RESULTS
High-fat diet supplemented with alcohol induces
experimental ASH
We administered C57Bl/6 mice with an LDC high-fat diet,32

supplemented with ethanol, followed by intraperitoneal lipo-
polysaccharide (LPS) injection 24 h prior to sacrifice as detailed
in figure 1A. H&E stainings of liver sections from mice receiv-
ing an ethanol-enriched LDC diet (LDCEtOH), but not LDC

Figure 1 x1/2pal-i1 treatment inhibited the development and progression of alcoholic liver disease. (A) Experimental approach. Mice received the
Lieber–DeCarli (LDC) diet. Pepducin therapy was commenced either with the introduction of ethanol (day 5; ‘preventative setting’; 2.5 mg/kg x1/
2pal-i1 subcutaneous every other day) or after mice had established disease (day 29, ‘therapeutic setting’; 5.0 mg/kg x1/2pal-i1 subcutaneous once
a day). On day 35, mice received LPS (2.5 mg/kg intraperitoneal) and were assessed 24 h later. (B) x1/2pal-i1 prevents development of liver
steatosis. Representative liver sections stained with H&E (n=15). (C) Therapeutic x1/2pal-i1 reverts liver steatosis. Representative liver sections
stained with H&E (n=15). (D) Histological disease activity. H&E-stained sections for hepatocyte ballooning, leucocyte infiltration and Mallory–Denk
bodies, Oil-red-O for steatosis. Statistical analysis: Mann–Whitney U after Kruskal–Wallis; n=15 per group; *p<0.05 (LDC vs LDC-EtOH); †p<0.05
(LDC-EtOH vs LDC-EtOH-x1/2pal-i1). (E) x1/2pal-i1 treatment prevents from alcohol-induced mortality. Mice received 2.5 mg/kg of x1/2pal-i1,
scram-i1 (2.5 mg/kg) or vehicle control every other day. Statistical analysis: Mantel–Cox test p<0.0001. n=15. (F) x1/2pal-i1 therapy reduces
alcohol-induced mortality and prevents from weight loss. Mice received 5 mg/kg of x1/2pal-i1, scram-i1 or vehicle control every day from day 29
until the conclusion of the experiment. The animals’ weight was taken every other day and weight curves were compared. Statistical analysis:
Mantel–Cox test p<0.0001. n=15 (n=7 for scram-i1).
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diet alone (LDCCtrl), resulted in severe steatohepatitis, charac-
terised by neutrophilic infiltration and hepatocyte ballooning,
lipid accumulation and Mallory–Denk bodies (figure 1B–D).
While microvesicular steatosis was observed in most of the liver
sections of LDCCtrl mice (figure 1B, C), addition of alcohol
resulted in a macrovesicular pattern with hepatocyte ballooning
in LDCEtOH mice (figure 1B, C). These features (figure 1D)
closely resemble the characteristic histological picture observed
in human ASH.35 LDCEtOH mice exhibited significant mortality
and developed cachexia (figure 1E, F) over the course of the
experiment, even prior to LPS administration (figure 1F). At the
end of the experiment, the liver-to-body weight ratio in
LDCEtOH mice was more than twofold higher compared with
LDCCtrl mice (figure 2A, B), which was associated with pro-
foundly increased ASTand ALT serum levels, reflecting increased
hepatocyte injury (figure 2A, B). Altogether, this experimental
model faithfully recapitulates many critical features of human
ASH.

CXCR1/2-specific antagonist pepducin x1/2pal-i1 prevents
steatohepatitis and mortality in experimental ASH
With hepatic neutrophil infiltration being a key characteristic
and IL-8 levels correlated with outcome of human ASH,17 18 we
asked whether CXCR1/2 signalling is causally involved in
experimental ASH. We chose a preventative regimen for block-
ing CXCR1/2 via the x1/2pal-i1 pepducin,25 administered at a
dose of 2.5 mg/kg every other day, commenced with the intro-
duction of ethanol (figure 1A). To rule out non-specific pepdu-
cin effects, we treated one group of mice with a scrambled
nonsense pepducin (scram-i1) at a dose of 2.5 mg/kg every other
day. Figure 1B demonstrates that x1/2pal-i1 almost completely
abrogated histological steatohepatitis in LDCEtOH mice, whereas
scram-i1 failed to do so. Importantly, x1/2pal-i1 almost com-
pletely protected from mortality in LDCEtOH mice (figure 1E).
The profound effect of x1/2pal-i1 was mirrored by normalisa-
tion of elevated AST and ALT serum levels in LDCEtOH mice
(figure 2B, C), alongside normalisation of liver-to-body weight
ratios (figure 2A). Pepducin x1/2pal-i1 did not affect liver hist-
ology in LDCCtrl mice (figure 1B). The scram-i1 pepducin failed
to protect mice from liver damage as observed by high AST and
ALT levels (figure 2B, C). Additionally, we observed no differ-
ence in the liver-to-body weight ratios between LDCEtOH mice
treated with DMSO- or scram-i1 injections (figure 2A).

x1/2pal-i1 is effective in reversing established experimental
steatohepatitis
We next investigated whether CXCR1/2 blockade would also be
effective therapeutically in fully raging disease. On day 1, we
pre-assigned mice to groups to receive either vehicle or x1/
2pal-i1, but postponed the start of treatment (daily 5 mg/kg x1/
2pal-i1) to day 29 (figure 1A), when LDCEtOH mice had already
developed cachexia and significant mortality compared with
LDCCtrl mice (figure 1F). This reflected severe disease present at
the start of pepducin treatment. In contrast to vehicle treatment,
x1/2pal-i1 indeed reversed histological steatohepatitis in
LDCEtOH mice (figure 1C). Liver leucocyte infiltration was
entirely prevented by x1/2pal-i1 in LDCEtOH mice, remarkably
with almost complete prevention of pathological lipid accumula-
tion in the liver (figure 1D). Similarly, elevated AST and ALT
serum levels in vehicle-treated mice returned to baseline upon
treatment with x1/2pal-i1 (figure 2B, C). Impressively, while the
group pre-assigned to receive x1/2pal-i1 from day 29 onwards
trended towards more severe disease prior to pepducin therapy
(figure 1F), treatment with x1/2pal-i1 reversed this trend and
resulted in a statistically significantly better overall survival at
the end of the experiment compared with vehicle-treated
LDCEtOH mice (figure 1F). This beneficial effect of therapeutic
x1/2pal-i1 was mirrored by almost complete normalisation of
liver-to-body weight ratios in LDCEtOH mice (figure 2A), along-
side a steep increase towards normalisation of total body weight
after institution of x1/2pal-i1 treatment (figure 1F). Altogether,
these data establish that CXCR1/2 signalling is a critical driver
of experimental ASH and that therapeutic intervention in estab-
lished disease via the specific pepducin x1/2pal-i1 reverses
disease and prevents mortality.

x1/2pal-i1 treatment abrogates pro-inflammatory cytokine
transcription and downregulates caspase-1 expression
Human ASH is accompanied by high serum levels of IL-8 and
increased hepatic expression of IL-8, TNFα and IL-1β.15 17 18

LDCEtOH mice exhibited increased serum levels of CXCL1 com-
pared with LDCCtrl mice (figure 3A). Hepatic mRNA expression

Figure 2 x1/2pal-i1 treatment normalises liver–body weight ratio and
prevents from hepatic necrosis. (A) Prophylactic and therapeutic x1/
2pal-i1 administration result in a normal liver–body weight ration.
Statistical analysis: Mann–Whitney U after Kruskal–Wallis. n=15 per
group (n=7 for scram-i1 experiment). (B and C) Prophylactic and
therapeutic x1/2pal-i1 treatment prevents from liver cell necrosis.
Aspartate aminotransferase (AST) and alanine aminotransferase (ALT)
levels as markers of liver cell necrosis. Statistical analysis: Mann–
Whitney U after Kruskal–Wallis. n=15 per group (n=7 for scram-i1
experiment).
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of Cxcl1, Tnf and Il1β was increased in LDCEtOH compared
with LDCCtrl mice (figure 3B–D). Increased Il1β expression in
LDCEtOH mice was prevented by x1/2pal-i1 administration
(figure 3C), and even when administration was delayed until
disease had established (figure 3C). CXCL1 serum levels were
similarly reduced (figure 3A) by x1/2pal-i1, while Cxcl1 and
Tnf mRNA levels only trended lower (figure 3B, C). These data
show that x1/2pal-i1 treatment of experimental ASH normalises
hepatic expression of inflammatory cytokines, which are charac-
teristically induced in human ASH.

Patients suffering from ASH exhibit increased caspase-1
expression.36 37 Similarly, chronic ethanol exposure in mice
induces pro-caspase-1 expression.37 To test whether blocking
CXCR2 receptors by x1/2pal-i1 decreases inflammasome activa-
tion, we probed liver tissue lysates for caspase-1, a hallmark of
inflammasome activity. Our results indicate that the blockade of
CXCR2 reduces the amount of pro-caspase-1 in x1/
2pal-i1-treated mice, whereas DMSO and scram-1 treatment had
no effect. Interestingly, no differences in the amount of active
caspase-1 (p20) were detected, which could, however, be a result
of a relatively short half-life of cleaved caspase-1 (figure 3E).37 38

x1/2pal-i1 pepducin abrogates neutrophil accumulation
in experimental ASH
Hepatic neutrophil accumulation is a characteristic feature
of ASH and is similarly observed in experimental ASH
(figure 4A, B), as revealed through staining with naphthol AS-D
chloroacetate, a chromogenic substrate of the specific esterases
of neutrophilic granules. Administration of x1/2pal-i1 to
LDCEtOH mice reduced the numbers of neutrophils per high-
power field to those observed in LDCCtrl mice (figure 4A).
Activated neutrophils have a short half-life and high turnover in
inflamed tissue. Delayed CXCR1/2 blockade by x1/2pal-i1 like-
wise resulted in a similar complete abrogation of neutrophil
accumulation in LDCEtOH mice (figure 4B), whereas scram-1
had no effect on neutrophil numbers. Finally, liver MPO levels
were decreased to baseline levels in x1/2pal-i1-treated LDCEtOH

mice (figure 4C).

Hepatocyte Hep3b and HepG2 cells secrete CXCL8 upon
alcohol exposure, attracting neutrophils in vitro
In addition to liver Kupffer cells, hepatocytes also contribute
profoundly to inflammatory cytokine secretion in the liver. We

Figure 3 CXCR2 blockade reduces pro-inflammatory cytokine expression. Mice on Lieber–DeCarli diet were injected with x1/2pal-i1 in a
prophylactic or therapeutic mode. (A) x1/2pal-i1 pepducin treatment decreases serum CXCL1. CXCL1 serum levels were measured by ELISA. (B)
CXCR1/2 blockade by the x1/2pal-i1 pepducin decreases hepatic CXCL1 mRNA transcription. mRNA levels were measured by SYBR-green real-time
PCR. (C) CXCR1/2 blockade by the x1/2pal-i1 pepducin decreases hepatic interleukin (IL)-1β mRNA transcription. mRNA levels were measured by
SYBR-green real-time PCR (D) CXCR1/2 blockade by the x1/2pal-i1 pepducin decreases hepatic tumour necrosis factor (TNF)α mRNA transcription.
mRNA levels were measured by SYBR-green real-time PCR. Statistical analysis: Mann–Whitney U after Kruskal–Wallis. n=6 (E) CXCR1/2 blockade
reduces pro-caspase-1 expression in livers. Liver tissue lysates were immunoblotted for caspase-1 protein expression. Representative western blot
analysis, n=3, each lane represents an individual liver specimen.
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chose the human Hep3b and HepG2 cell lines to test the
hypothesis that ethanol exposure directly induces CXCL1 secre-
tion in hepatocytes. As shown in figure 4D, 1.5 and 15 mM
ethanol in culture medium resulted in a substantial increase in
CXCL8 release from Hep3b and HepG2 cells. Supernatants
from ethanol-exposed Hep3b and HepG2 (data not shown)
cells exhibited chemotactic activity to neutrophils in vitro, and
this activity was completely blocked either by a neutralising
anti-CXCL8 monoclonal antibody and x1/2pal-i1, whereas a
blocking anti-CXCL17 antibody had no effect (figure 4E). In
another set of experiments, human neutrophil chemotaxis
towards supernatants of ethanol-treated HepG2 cells was per-
formed in the presence of scram-1. Scram-1 had no effect on
the induction of chemotaxis towards the supernatants. CXCL8
(1 nM) served as control (figure 4E). Altogether, these data
suggest that upon ethanol-induced tissue damage in experimen-
tal ASH, injured hepatocytes may release ligands for CXCR1/2,
which recruit neutrophils into the liver, which in turn may
release cytotoxic contents of their granula, resulting in the char-
acteristic tissue damage of ASH.

x1/2pal-i1 treatment prevents lipid accumulation in
experimental ASH
Hepatocyte lipid accumulation is a cardinal feature of ASH.3

LDCCtrl mice exhibited little fat accumulation in their livers as
determined by Oil-red-O staining, whereas the number of
hepatic lipid vesicles was drastically increased in LDCEtOH mice

(figure 5A). Administration of x1/2pal-i1 completely prevented
this increase in lipid vesicles in LDCEtOH mice (figure 5A).
Triglycerides are thought to represent the primary lipid species
in ballooned hepatocytes in ASH.39 We, therefore, quantified tri-
glycerides within the lipophilic fraction extracted from whole
murine livers via the Folch method. Triglyceride content in
LDCEtOH mice was significantly increased compared with
LDCCtrl mice (figure 5B). x1/2pal-i1 completely prevented this
increase in LDCEtOH mice to levels below those observed in
LDCCtrl mice (figure 5B). Compared with vehicle-treated
LDCCtrl mice, both Oil-red-O+ lipid vesicles and liver trigly-
ceride content trended higher upon x1,2pal-i1 treatment
(figure 5A, B). However, this was not associated with increased
liver/body weight ratio (figure 2A). To exclude potential toxicity
of x1/2pal-i1, higher doses (5 mg/kg, every other day) were
administered in mice on a normal diet. We did not observe an
increase in ALT (figure 5D) or AST (figure 5E) levels in serum
nor was the liver-to-body weight ratio altered compared with
vehicle-treated mice (figure 5C).

CONCLUSION
Here, we demonstrate that CXCR1/2 signalling plays a central
role in an experimental model of ASH, which phenocopies core
features of human ASH. Remarkably, late therapeutic blockade
of CXCR1/2 signalling with the pepducin x1/2pal-i1 in estab-
lished, severe disease, was effective in preventing further mortal-
ity and reversing liver inflammation (figure 6).

Figure 4 Pepducin treatment inhibits neutrophil infiltration and activation. (A and B) x1/2pal-i1 prevents accumulation of neutrophils in liver tissue
sections of alcoholic mice. To compare the numbers of neutrophils, histological sections were stained with naphthol AS-D chloroacetate. Neutrophil
numbers were counted in four representative microscopic fields from 10 individual mice per group. (C) x1/2pal-i1 treatment reduces myeloperoxidase
(MPO) levels in liver tissue. Homogenised liver tissue was assessed for MPO levels. Right panel: preventative treatment; left panel: therapeutic
treatment. Statistical analysis: Mann–Whitney U after Kruskal–Wallis. n=10. (D) Ethanol induces CXCL1 secretion in Hep3B and HepG2 cells. CXCL1
levels were measured after 24 h of ethanol exposure to the cells. Mann–Whitney U after Kruskal–Wallis, n=3 (E) Ethanol-induced neutrophil
chemotaxis is CXCL8 dependent. CXCL8 (IL-8) was neutralised by adding antibodies directed against CXCL8. CXCR1 and CXCR2 receptor signalling
was inhibited by x1/2pal-i1. The nonsense pepducin scram-i1 had no effect on neutrophil chemotaxis induced by HepG2 cell supernatants.
Chemotaxis experiments were performed in modified Boyden chambers. Statistical analysis: Mann–Whitney U after Kruskal–Wallis, n=3. LDC,
Lieber–DeCarli diet.
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Neutrophil infiltration in the liver is a classic hallmark of
human ASH, and correspondingly observed in experimental
ASH. Efficacy of x1/2pal-i1 in experimental ASH was associated

with a profound reduction of neutrophil granulocytes infiltrat-
ing the liver, signifying a critical role of neutrophils in this
disease. More specifically, neutrophils are recruited to sites of
invading pathogens or tissue injury within minutes.40 Apart
from removing pathogens by phagocytosis, neutrophils,
however, release an array of mediators such as MPO, matrix
metalloproteases, serine proteases, elastases, cathepsin G and
nicotinamide adenine dinucleotide phosphate oxidase, which
can promote tissue damage.41 Hepatic neutrophil infiltration
has also been demonstrated in other experimental models of
liver disease such as ischaemia-reperfusion,42 43 ConA-induced
and CCl4-induced hepatitis.44 Interestingly, in a murine sepsis
model we have previously shown that CXCR1/2 blockade
results in suppression of the systemic inflammatory response
syndrome without yielding higher bacterial loads.25 Blocking
CXCR1 and CXCR2 receptors with pepducins did not suppress
chemotaxis induced by other neutrophil chemoattractants;
therefore, x1/2pal-i1 may be rather considered immunomodula-
tory rather than immunosuppressive.25 Blocking neutrophil emi-
gration from the blood stream into liver tissue and preventing
their overzealous activation via x1/2pal-i1 may represent an
intervention at a critical checkpoint that shuts off organ destruc-
tion, resulting in protection from acute liver failure, and may
also prevent further consequences such as fibrosis.45

CXCR1/2 blockade via x1/2pal-i1 was associated with nor-
malisation of increased hepatic IL-1β expression during

Figure 5 (A) CXCR1/2 pepducin blockade reverses steatosis in alcoholic mice. Oil-red-O stain of liver sections of mice treated therapeutically.
N=15. (B) Blockade of CXCR2 receptors decreases the triglyceride content in livers. Triglycerides from liver tissue of mice treated therapeutically
were measured by a photometric assay. N=10. Statistical analysis: Mann–Whitney U test after Kruskal–Wallis. (C–E) The x1/2pal-i1 pepducin has no
effect in mice on regular chow diet. Mice received the animal facility’s standard chow diet. The animals were injected with either 10% of dimethyl
sulfoxide or the x1/2pal-i1 pepducin (5 mg/kg) subcutaneous every other day. After 5 weeks of treatment, the animals were sacrificed and evaluated
for (C) liver–body weight ratio, (D) alanine aminotransferase (ALT) and (E) aspartate aminotransferase (AST). N=10. Statistical analysis: Mann–
Whitney U after Kruskal–Wallis; n.s.: p>0.05. LDC, Lieber–DeCarli diet.

Figure 6 Proposed mechanism of x1/2pal-i1 therapy. IL, interleukin;
MMP, matrix metalloproteinases; MPO, myeloperoxidase; ROS, reactive
oxygen species; TNF, tumour necrosis factor.
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experimental ASH. IL-1β secretion due to caspase-1 activation
in Kupffer cells has previously been shown to induce hepatic
steatosis, and blockade with recombinant IL-1 receptor antagon-
ist (IL-1Ra, Anakinra) in experimental steatohepatitis attenuated
liver inflammation.37 In our model of experimental ASH, we
show that blocking CXCR2 receptors downregulates the expres-
sion of pro-caspase 1. Interestingly, Marques et al46 reported
that DF2156a, an allosteric small peptide inhibitor of CXCR1/
2, reduced the number of infiltrating neutrophils in
paracetamol-induced liver injury, but this was not associated
with a reduction in liver injury. The latter required co-blockade
of the formyl peptide receptor 1,46 which could either point to
differences in pathogenesis of these liver injury models or the
specific potency of x1/2-pal-i1 in blocking CXCR1/2 signalling.

The IL-8 receptors CXCR1 and CXCR2 are not only
expressed on leucocytes but can also be found on human hepa-
tocytes under pathological conditions.42 43 Upon ischaemia/
reperfusion injury, CXCR1 is upregulated on murine hepato-
cytes and appears involved in hepatocyte proliferation. Genetic
deletion of CXCR1 or its blockade by repertaxin resulted in a
significant decrease of BrdU incorporation into proliferating
hepatocytes.47 In this model of ischaemia/reperfusion injury,
which indeed causes one single assault to the liver tissue, immi-
grating neutrophils are a good prognostic factor and facilitate
repair and regeneration.47 In ASH, in contrast, with alcohol
present as a constant noxa, repair and regeneration might result
in hyperproliferation and consequent development of neoplasia.
Liver cirrhosis bears a high risk for developing hepatocellular
carcinoma, and it might be speculated that increased hepatocyte
CXCR1 expression consequent to liver injury could promote
pathological hyperproliferation. Indeed, CXCL5, another
CXCR2 ligand, has been shown to be associated with a high
neutrophil load and poor outcome in hepatocellular carcin-
oma.48 CXCR1 and CXCR2 also promote neoangiogenesis in
tumour tissue.30 31 Hence, blockade of CXCR1/2 signalling
may not only beneficially affect acute inflammation and the
development of steatosis, but could potentially also decrease the
risk of hepatocellular carcinoma.

Treatment for severe ASH includes supportive measures to
reduce ascites, prevent infections, treat hepatic encephalopathy
(antibiotics, lactulose), ascertain sufficient protein intake and
maintain serum albumin levels, and supplementation of vitamins
(thiamine).2 The use of corticosteroids in ASH remains contro-
versial due to the increased infection risk,49 while some lines of
evidence suggest that pentoxifylline may be associated with
improved in-hospital survival.50 Targeting TNFα has yielded
mixed results in clinical trials, complicated by increased risk of
severe infections and associated with increased mortality rates,
and is therefore currently not recommended.51–53 The only treat-
ment that has shown to significantly improve the long-term
outcome of AH is liver transplantation.54 The treatment of
patients with acute alcoholic liver disease with CXCR1/2 block-
ing pepducins, therefore, deserves evaluation in clinical trials.
The first clinical phase 1 trial with a pepducin inhibitor of
protease-activated receptor 155 has been successfully completed
(http://clinicaltrials.gov/ct2/show/NCT01806077), potentially
paving the way for clinical development of other pepducins such
as the CXCR1/2-directed x1/2pal-i1 pepducin for severe ASH.
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