53 research outputs found

    The Progress of the SDGs Research

    Get PDF
    The global Sustainable Development Goals (SDGs) provide an evidence-based policy for sustainable development planning and programming to halt poverty, gain prosperity and protect the planet by 2030. The SDGs consist of 17 goals and 169 targets that emphasize the balance between economic, social and environmental sustainability. Since the framework launched in 2015, there is growing international policies, practices, innovations, assessments and research activities related to such issue

    PENGARUH GAME RABBIDS CODING TERHADAP STRUKTUR BERPIKIR ANAK SD KELAS IV

    Get PDF
    Game rabbids coding adalah game yang bertema edukasi dan memiliki potensi yang sangat besar untuk meningkatkan motivasi dan semangat belajar, selain itu game yang memiliki tema edukasi juga memiliki kelebihan di bandingkan dengan metode e-learning karena lebih mudah dipahami dan juga lebih menarik dari penggunanya, desain dari game ini lebih mengutamakan proses belajar bahasa pemrograman dasar. Pada abad ke 21 ini atau era revolusi industri 4.0 merupakan tantangan berat bagi guru Indonesia, karena kualitas pendidikan menjadi tolak ukur keberhasilan generasi bangsa, dan era revolusi ini selalu berhubungan dengan teknologi dan informasi. Tujuan penelitian ini adalah untuk mengetahui apakah game rabbids coding berpengaruh terhadap struktur berpikir siswa SD kelas IV dan kelas V. Penelitian ini menggunakan metode kuantitatif yang digunakan untuk menggambarkan kegiatan pembelajaran selama proses pembelajaran dan untuk menjelaskan indikator pemahaman apa yang telah dipelajari siswa setelahnya. Hasil dari penelitian ini adalah Game rabbids coding berpengaruh positif dan signifikan terhadap struktur berpikir siswa SD kelas IV. Berdasarkan hasil analisis yang diperoleh hasil uji T (parsial) ditemukan bahwa thitung > ttabel (5.603 > 2.01669) sehingga H0 ditolak karena secara statistik adalah signifikan, dari hasil uji T nilai signifikan lebih kecil dari 0.05 (0.000 ttabel (5.603 > 2.01669) dan taraf signifikan T sebesar 5% (0.344 < 0.05). Hal tersebut menunjukan bahwa pengaruh yang signifikan antara game rabbids coding terhadap struktur berpikir siswa SD kelas IV. Kata kunci- Revolusi industri, programming, Rabbids codin

    ANALISIS STRATEGI PENGEMBANGAN DESTINASI WISATA TAMAN HUTAN RAYA IR. H. DJUANDA DAGO

    Get PDF
    Pandemi Covid-19 telah membuat perubahan yang besar pada kehidupan di dunia dari mulai lingkungan, ekonomi hingga masyarakat terkena dampak, salah satu dampak perubahan yang dapat dilihat saat ini adalah preferensi wisatawan dalam melakukan kegiatan dan memilih objek wisata. Kota Bandung banyak memiliki destinasi pariwisata dengan konsep ruang terbuka salah satunya adalah di kawasan Taman Hutan Raya Ir. H. Djuanda, destinasi ini memiliki berbagai atraksi wisata yang dari mulai alam, buatan, dan sejarah. Pada saat ini mengatur ulang kembali strategi pengembangan destnisasi wisata dapat menjadi solusi dalam meminimalisir dampak dari pandemi covid-19 karena telah terjadi perubahan di kehidupan masyarakat. Dengan adanya fenomena ini penyusunan Analisis Strategi Pengembangan Destinasi Wisata Taman Hutan Raya Ir. H. Djuanda Dago diperlukan karena setelah masa pasca pandemi terdapat perubahan trend dalam kegiatan pariwasata, untuk mengembagkan strategi di destinasi ini akan dilakukan analisis S.W.O.T dengan harapan dapat memberi masukan dan saran untuk mengembangkan destinasi alam di wilayah tahura dapat berkembang lebih baiksesuai dengan perkembangan zaman dan trend berwisata saat ini

    S4ND: Single-Shot Single-Scale Lung Nodule Detection

    Full text link
    The state of the art lung nodule detection studies rely on computationally expensive multi-stage frameworks to detect nodules from CT scans. To address this computational challenge and provide better performance, in this paper we propose S4ND, a new deep learning based method for lung nodule detection. Our approach uses a single feed forward pass of a single network for detection and provides better performance when compared to the current literature. The whole detection pipeline is designed as a single 3D3D Convolutional Neural Network (CNN) with dense connections, trained in an end-to-end manner. S4ND does not require any further post-processing or user guidance to refine detection results. Experimentally, we compared our network with the current state-of-the-art object detection network (SSD) in computer vision as well as the state-of-the-art published method for lung nodule detection (3D DCNN). We used publically available 888888 CT scans from LUNA challenge dataset and showed that the proposed method outperforms the current literature both in terms of efficiency and accuracy by achieving an average FROC-score of 0.8970.897. We also provide an in-depth analysis of our proposed network to shed light on the unclear paradigms of tiny object detection.Comment: Accepted for publication at MICCAI 2018 (21st International Conference on Medical Image Computing and Computer Assisted Intervention

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Towards automatic pulmonary nodule management in lung cancer screening with deep learning

    Get PDF
    The introduction of lung cancer screening programs will produce an unprecedented amount of chest CT scans in the near future, which radiologists will have to read in order to decide on a patient follow-up strategy. According to the current guidelines, the workup of screen-detected nodules strongly relies on nodule size and nodule type. In this paper, we present a deep learning system based on multi-stream multi-scale convolutional networks, which automatically classifies all nodule types relevant for nodule workup. The system processes raw CT data containing a nodule without the need for any additional information such as nodule segmentation or nodule size and learns a representation of 3D data by analyzing an arbitrary number of 2D views of a given nodule. The deep learning system was trained with data from the Italian MILD screening trial and validated on an independent set of data from the Danish DLCST screening trial. We analyze the advantage of processing nodules at multiple scales with a multi-stream convolutional network architecture, and we show that the proposed deep learning system achieves performance at classifying nodule type that surpasses the one of classical machine learning approaches and is within the inter-observer variability among four experienced human observers.Comment: Published on Scientific Report

    Does Educational Disaster Mitigation Need To Be Introduced In School?

    Get PDF
    corecore