219 research outputs found

    Existence, positivity and stability for a nonlinear model of cellular proliferation

    Get PDF
    In this paper, we investigate a system of two nonlinear partial differential equations, arising from a model of cellular proliferation which describes the production of blood cells in the bone marrow. Due to cellular replication, the two partial differential equations exhibit a retardation of the maturation variable and a temporal delay depending on this maturity. We show that this model has a unique solution which is global under a classical Lipschitz condition. We also obtain the positivity of the solutions and the local and global stability of the trivial equilibrium

    Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases

    Get PDF
    Hematopoiesis is a complex biological process that leads to the production and regulation of blood cells. It is based upon differentiation of stem cells under the action of growth factors. A mathematical approach of this process is proposed to carry out explanation on some blood diseases, characterized by oscillations in circulating blood cells. A system of three differential equations with delay, corresponding to the cell cycle duration, is analyzed. The existence of a Hopf bifurcation for a positive steady-state is obtained through the study of an exponential polynomial characteristic equation with delay-dependent coefficients. Numerical simulations show that long period oscillations can be obtained in this model, corresponding to a destabilization of the feedback regulation between blood cells and growth factors. This stresses the localization of periodic hematological diseases in the feedback loop

    Functional differential equations with unbounded delay in extrapolation spaces

    Get PDF
    International audienceWe study the existence, regularity and stability of solutions for nonlinear partial neutral functional differential equations with unbounded de-lay and a Hille-Yosida operator on a Banach space X. We consider two non-linear perturbations: the first one is a function taking its values in X and the second one is a function belonging to a space larger than X, an extrapolated space. We use the extrapolation techniques to prove the existence and regu-larity of solutions and we establish a linearization principle for the stability of the equilibria of our equation

    Stability and Hopf bifurcation in a mathematical model of pluripotent stem cell dynamics

    Get PDF
    We study a mathematical model describing the dynamics of a pluripotent stem cell population involved in the blood production process in the bone marrow. This model is a differential equation with a time delay. The delay describes the cell cycle duration and is uniformly distributed on an interval. We obtain stability conditions independent of the delay. We also show that the distributed delay can destabilize the entire system. In particularly, it is shown that Hopf bifurcations can occur

    A Dynamic P53-MDM2 Model with Time Delay

    Full text link
    Specific activator and repressor transcription factors which bind to specific regulator DNA sequences, play an important role in gene activity control. Interactions between genes coding such transcription factors should explain the different stable or sometimes oscillatory gene activities characteristic for different tissues. Starting with the model P53-MDM2 described into [6] and the process described into [5] we developed a new model of this interaction. Choosing the delay as a bifurcation parameter we study the direction and stability of the bifurcating periodic solutions. Some numerical examples are finally given for justifying the theoretical results.Comment: 16 pages, 12 figure

    Age-structured model of hematopoiesis dynamics with growth factor-dependent coefficients

    Get PDF
    International audienceWe propose and analyze an age-structured partial differential model for hematopoietic stem cell dynamics, in which proliferation, differentiation and apoptosis are regulated by growth factor concentrations. By integrating the age-structured system over the age and using the characteristics method, we reduce it to a delay differential system. We investigate the existence and stability of the steady states of the reduced delay differential system. By constructing a Lyapunov function, the trivial steady state, describing cell's dying out, is proven to be globally asymptotically stable when it is the only equilibrium of the system. The asymptotic stability of the positive steady state, the most biologically meaningful one, is analyzed using the characteristic equation. This study may be helpful in understanding the uncontrolled proliferation of blood cells in some hematological disorders

    Eigenelements of a General Aggregation-Fragmentation Model

    Get PDF
    We consider a linear integro-differential equation which arises to describe both aggregation-fragmentation processes and cell division. We prove the existence of a solution (\lb,\U,\phi) to the related eigenproblem. Such eigenelements are useful to study the long time asymptotic behaviour of solutions as well as the steady states when the equation is coupled with an ODE. Our study concerns a non-constant transport term that can vanish at x=0,x=0, since it seems to be relevant to describe some biological processes like proteins aggregation. Non lower-bounded transport terms bring difficulties to find a prioria\ priori estimates. All the work of this paper is to solve this problem using weighted-norms

    Modelling and Asymptotic Stability of a Growth Factor-Dependent Stem Cells Dynamics Model with Distributed Delay

    Get PDF
    21 pagesInternational audienceUnder the action of growth factors, proliferating and nonproliferating hematopoietic stem cells differentiate and divide, so as to produce blood cells. Growth factors act at different levels in the differentiation process, and we consider their action on the mortality rate (apoptosis) of the proliferating cell population. We propose a mathematical model describing the evolution of a hematopoietic stem cell population under the action of growth factors. It consists of a system of two age-structured evolution equations modelling the dynamics of the stem cell population coupled with a delay differential equation describing the evolution of the growth factor concentration. We first reduce our system of three differential equations to a system of two nonlinear differential equations with two delays and a distributed delay. We investigate some positivity and boundedness properties of the solutions, as well as the existence of steady states. We then analyze the asymptotic stability of the two steady states by studying the characteristic equation with delay-dependent coefficients obtained while linearizing our system. We obtain necessary and sufficient conditions for the global stability of the steady state describing the cell population's dying out, using a Lyapunov function, and we prove the existence of periodic solutions about the other steady state through the existence of a Hopf bifurcation
    • …
    corecore