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Avenue de l’université, 64000 Pau, France.

E-mail: mostafa.adimy@univ-pau.fr, fabien.crauste@univ-pau.fr

∗Department of Mathematics, University of Miami,
P. O. Box 249085, Coral Gables, FL 33124-4250, USA.

E-mail: ruan@math.miami.edu

Abstract

We study a mathematical model describing the dynamics of a pluripotent stem cell

population involved in the blood production process in the bone marrow. This model

is a differential equation with a time delay. The delay describes the cell cycle duration

and is uniformly distributed on an interval. We obtain stability conditions independent

of the delay. We also show that the distributed delay can destabilize the entire system.

In particularly, it is shown that Hopf bifurcations can occur.

Keywords: Blood production system, stem cells, delay differential equations, stability, Hopf
bifurcation.

1 Introduction

Blood production process, called hematopoiesis, is one of the major biological phenomena
occurring in human body. It takes place in the bone marrow where pluripotent stem cells
give birth to mature cells. After ejecting their nuclei, these cells enter the bloodstream and
become blood cells.

According to the study of Burns and Tannock [4], the population of pluripotent stem cells
can be divided into two distinct groups: quiescent cells and proliferating cells. Mathematical
models describing the dynamics of this cell population have been studied since the end of the
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seventies, in particularly by Mackey [9, 10]. We refer to the review articles by Haurie et al.
[8] and Mackey et al. [12] for further study and more references on this topic. More recently,
Pujo-Menjouet et al. [14] and Pujo-Menjouet and Mackey [15] proved the existence of a
Hopf bifurcation for the hematopoiesis model proposed in [9]. In all these works, the authors
assumed that the proliferating phase duration is constant. Mathematically, this means that
the delay in their models is a discrete delay. However, experimental data (see Bradford et al.
[3]) indicate that cells do not spend the same time in the proliferating phase.

In this paper, taking into account this assumption, we assume that the delay (or pro-
liferating phase duration) is uniformly distributed on an interval. The main objective is to
investigate the effect of time delay on the dynamical solutions. It is shown that there exist
some critical values of time delay such that a local Hopf bifurcation occurs at the non-trivial
equilibrium.

The paper is organized as follows. In section 2, we present our model, which is given in
equation (1). In section 3, we derive stability conditions for the two equilibria of equation
(1) which do not depend on the delay. We show the existence of Hopf bifurcations at the
non-trivial equilibrium in section 4. A brief discussion is given in section 5.

2 The Model

Pluripotent stem cells can be either in a resting phase, also known as G0-phase, or in a
proliferating phase. In the resting phase, they can die at a constant rate δ ≥ 0, which also
includes the cellular differentiation, or be introduced in the proliferating phase at a rate β.
According to the work of Sachs [16], β is assumed to depend on the resting phase population.

In the proliferating phase, which is in fact the so-called cell cycle, pluripotent stem cells
are committed to divide and give birth to two daughter cells at the end of this phase. The
two daughter cells enter directly the resting phase and complete the cycle. We assume
that proliferating cells divide according to a uniform law f on an interval [τmin, τ ] with
0 ≤ τmin < τ < +∞. This assumption comes from the fact that, even if only a little is
known about phenomena involved in hematopoiesis, there are strong evidences (see Bradford
et al. [3]) indicating that cells do not divide at the same age. The function f is then defined
by

f(r) =







1

τ − τmin
, if r ∈ [τmin, τ ],

0, otherwise.

Let x(t) denote the pluripotent stem cell population density (cells/kg) at time t ≥ 0. It
satisfies the nonlinear delay differential equation

x′(t) = −
(

δ + β(x(t))
)

x(t) +
2

τ − τmin

∫ τ

τmin

β(x(t − r))x(t − r)dr. (1)

The first term in the right-hand side of equation (1) accounts for the cellular loss due to
mortality and cellular differentiation, δx(t), and introduction in the cell cycle, β(x(t))x(t).
The second term is for the division of proliferating cells into two daughter cells during mitosis.
Proliferating cells are in fact resting cells introduced in the proliferating phase one generation
earlier, so that the quantity β(x(t − r))x(t − r) appears with a time delay. The factor 2 is,
of course, for the division of each proliferating cell into two daughter cells.

In the following, the rate of reintroduction in the proliferating compartment β is taken
to be a monotone and decreasing Hill function, given by

β(x) = β0
θn

θn + xn
for x ≥ 0.
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The coefficient β0 > 0 is the maximum rate of reintroduction, θ ≥ 0 is the G0-phase popula-
tion density for which the rate of re-entry β attains its maximum rate of change with respect
to the resting phase population, and n ≥ 0 describes the sensitivity of β with changes in the
population. This function was firstly used in hematopoiesis models by Mackey [9] in 1978.

In [9] and [11], Mackey gave values of the above parameters for a normal human body
production. These values are

δ = 0.05 d−1, β0 = 1.77 d−1 and n = 3. (2)

The value of θ is usually θ = 1.62×108 cells/kg. However, since we shall study the qualitative
behavior of the pluripotent stem cells population, the value of θ is not really important and
could be normalized without loss of generality.

Now if we consider an initial continuous nonnegative function ϕ defined on [−τ, 0], then
the equation (1) has a unique continuous and nonnegative solution xϕ(t), defined for t ≥ −τ ,
such that

xϕ(s) = ϕ(s) for s ∈ [−τ, 0].

This can be obtained by using the results in Hale and Verduyn Lunel [7].
Notice that equation (1) has at most two equilibria, the trivial equilibrium x ≡ 0 and a

non-trivial positive equilibrium x ≡ x∗. The trivial equilibrium always exists and corresponds
to the extinction of the population.

Proposition 2.1. Equation (1) has a non-trivial positive equilibrium x ≡ x∗ if and only if

β0 > δ > 0. (3)

In this case, x∗ is explicitly given by

x∗ = θ

(

β0

δ
− 1

)1/n

.

Proof. Let x∗ be an equilibrium of equation (1). Then x∗ satisfies

x∗
(

β(x∗) − δ
)

= 0.

Consequently, equation (1) has a non-trivial equilibrium if and only if the equation

β(x∗) = δ

has a non-trivial solution. Since the function β is decreasing and positive with β(0) = β0,
then equation (1) has a non-trivial equilibrium if and only if condition (3) holds.

In the next section, we shall study the stability of the two equilibria of equation (1).

3 Stability

Throughout this section, we are interested in the stability of the equilibria of equation (1),
in particularly the stability of the non-trivial equilibrium x ≡ x∗. We start by giving a result
on the global stability of the trivial equilibrium of (1).

Theorem 3.1. The trivial equilibrium x ≡ 0 of equation (1) is globally stable if

β0 < δ.
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Proof. The proof uses a similar technique employed by Adimy and Crauste [1]. It is based
on the construction of a Lyapunov functional.

Denote by C+ the space of all continuous nonnegative functions on [−τ, 0]. Let B be the
function defined by

B(x) =

∫ x

0

β(s)s ds for x ≥ 0.

Consider the mapping J : C+ → [0, +∞) defined, for ϕ ∈ C+, by

J(ϕ) = B(ϕ(0)) +
1

τ − τmin

∫ τ

τmin

∫ 0

−r

(

β(ϕ(a))ϕ(a)
)2

dadr.

Then,

J̇(ϕ) = ϕ̇(0)β(ϕ(0))ϕ(0) +
1

τ − τmin

∫ τ

τmin

(

β(ϕ(0))ϕ(0)
)2

−
(

β(ϕ(−r))ϕ(−r)
)2

dr.

Since

ϕ̇(0) = −
(

δ + β(ϕ(0))
)

ϕ(0) +
2

τ − τmin

∫ τ

τmin

β(ϕ(−r))ϕ(−r)dr,

we obtain that

J̇(ϕ) = −
(

δ + β(ϕ(0))
)

β(ϕ(0))ϕ2(0) +
2

τ − τmin

∫ τ

τmin

(

β(ϕ(0))ϕ(0)
)2

dr

−
1

τ − τmin

∫ τ

τmin

(

β(ϕ(0))ϕ(0) − β(ϕ(−r))ϕ(−r)
)2

dr.

Hence,
J̇(ϕ) ≤ −

(

δ − β(ϕ(0))
)

β(ϕ(0))ϕ(0)2.

Let α be the function defined, for x ≥ 0, by

α(x) = (δ − β(x))β(x)x2 .

Assume that β0 < δ. Since β is a decreasing function, it follows that the function x 7→ δ−β(x)
is positive for x ≥ 0. Hence, α is nonnegative on [0, +∞) and α(x) = 0 if and only if x = 0.
Consequently, the mapping J is a Lyapunov functional when β0 < δ. We then deduce that
the trivial equilibrium of (1) is globally stable.

The result in Theorem 3.1 describes the fact that when x ≡ 0 is the only equilibrium of
(1), the population is doomed to extinction except when β0 = δ.

Now we focus on the stability of the positive equilibrium x ≡ x∗ of equation (1). To
ensure the existence of the equilibrium x ≡ x∗, we assume that condition (3) holds; that is,

β0 > δ > 0.

We do not expect to obtain conditions for the global stability of x ≡ x∗. However, local
stability results can be obtained by linearizing equation (1) about x∗. Set

β∗ :=
d

dx

(

β(x)x
)∣

∣

∣

x=x∗
= δ

(

1 − n
β0 − δ

β0

)

. (4)

The linearization of equation (1) at x∗ is

x′(t) = −(δ + β∗)x(t) +
2β∗

τ − τmin

∫ τ

τmin

x(t − r)dr.
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The characteristic equation of (1) is given by

∆(λ) := λ + δ + β∗ −
2β∗

τ − τmin

∫ τ

τmin

e−λrdr = 0. (5)

We now state and prove our first result on the stability of x ≡ x∗.

Theorem 3.2. Assume that

n
β0 − δ

β0
≤ 1.

Then the non-trivial equilibrium x ≡ x∗ of equation (1) is locally asymptotically stable.

Proof. We show, in fact, that x∗ is stable when β∗ ≥ 0. By the definition of β∗ given by (4),
it follows that

β∗ ≥ 0 if and only if n
β0 − δ

β0
≤ 1.

So we assume that β∗ ≥ 0.
We first assume that ∆(λ), given by (5), is a real function. Then, ∆(λ) is continuously

differentiable and its first derivative is given by

d∆

dλ
(λ) = 1 +

2β∗

τ − τmin

∫ τ

τmin

re−λrdr. (6)

One can see that d∆/dλ is positive for λ ∈ R as soon as β∗ ≥ 0. Moreover,

lim
λ→−∞

∆(λ) = −∞ and lim
λ→+∞

∆(λ) = +∞.

Consequently, ∆(λ) has a unique real root λ0. Since

∆(0) = δ − β∗ = nδ
(

1 −
δ

β0

)

> 0,

we deduce that λ0 < 0.
Now, we show that if λ is a characteristic root of equation (5), then Re(λ) ≤ λ0. By

contradiction, we assume that there exists a characteristic root λ = µ + iω of equation (5)
such that µ > λ0. By considering the real part of ∆(λ), we obtain that

µ + δ + β∗ −
2β∗

τ − τmin

∫ τ

τmin

e−µr cos(ωr)dr = 0.

Consequently,

µ − λ0 =
2β∗

τ − τmin

∫ τ

τmin

(

e−µr cos(ωr) − e−λ0r
)

dr < 0.

This yields a contradiction. We conclude that every characteristic root λ of (5) is such that
Re(λ) ≤ λ0. Hence, all characteristic roots of (5) have negative real parts and the equilibrium
x ≡ x∗ is locally asymptotically stable.

When β∗ < 0, that is, when

1 < n
β0 − δ

β0
,

the stability cannot occur for all values of τmin and τ . In particularly, we shall show that a
Hopf bifurcation can occur (see Theorem 4.1). However, we can still have the stability of the
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non-trivial equilibrium x ≡ x∗ for values of n, β0 and δ if n(β0 − δ)/β0 is not too large. This
will be considered in the next theorem.

To present the results, without loss of generality we assume that

τmin = 0.

We want to point out that the results we are going to show remain true when τmin > 0, but
the proof is more complicated.

Define a function K, for x ≥ 0, by

K(x) =
sin(x)

x
(7)

and let x1 be the unique solution of the equation

x1 = tan(x1), x1 ∈ (π,
3π

2
).

Set
u0 := cos(x1) ∈ (−1, 0).

Then K ′(x1) = 0 and
u0 = K(x1) = min

x≥0
K(x). (8)

We have the following local stability theorem.

Theorem 3.3. Assume that

1 < n
β0 − δ

β0
<

2(1 − u0)

1 − 2u0
. (9)

Then the non-trivial equilibrium x ≡ x∗ of equation (1) is locally asymptotically stable.

Proof. Let us assume that (9) holds. Then β∗ < 0, δ + β∗ > 0 and

δ + β∗

2β∗
< u0. (10)

By contradiction, assume that there exists a characteristic root λ = µ+ iω of (5) with µ > 0.
Then,

µ = −(δ + β∗) +
2β∗

ωτ

∫ ωτ

0

e
−

µ

ω
r

cos(r)dr

and

ω = −
2β∗

ωτ

∫ ωτ

0

e
−

µ

ω
r

sin(r)dr.

Integrating by parts, we obtain that

2µ = −(δ + β∗) + 2β∗e−µτK(ωτ).

Consequently,
µ < −(δ + β∗) + 2β∗e−µτK(ωτ).

If ωτ is such that
sin(ωτ) ≥ 0,

6
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then
2β∗K(ωτ) < 0

and
µ < −(δ + β∗) ≤ 0.

So we obtain a contradiction.
Similarly, if ωτ is such that

sin(ωτ) < 0,

then, from (8) and (10), we deduce that

δ + β∗

2β∗
≤ K(ωτ).

It implies that
δ + β∗ ≥ 2β∗K(ωτ) > 2β∗e−µτK(ωτ).

Therefore,
µ < −(δ + β∗) + 2β∗K(ωτ) ≤ 0.

Again we obtain a contradiction. Hence, all characteristic roots λ of (5) are such that
Re(λ) ≤ 0.

Now, we assume that (5) has a purely imaginary characteristic root λ = iω. Then ω and
τ satisfy

K(ωτ) =
δ + β∗

2β∗
. (11)

Using (8) and (10), we obtain a contradiction. Consequently, (11) has no solution and
equation (5) does not have purely imaginary roots. We conclude that all characteristic roots
of (5) have negative real parts and x ≡ x∗ is locally asymptotically stable.

From Theorems 3.2 and 3.3, it follows that the non-trivial equilibrium x ≡ x∗ of equation
(1) is locally asymptotically stable when

0 ≤ n
β0 − δ

β0
<

2(1 − u0)

1 − 2u0
. (12)

We are going to show that as soon as condition (12) does not hold, then the equilibrium can
be destabilized. In the next section, we shall show that if condition (10) does not hold, then
a Hopf bifurcation indeed occurs at x ≡ x∗.

4 Hopf Bifurcations

In this section we are going to show that the non-trivial equilibrium x ≡ x∗ of equation (1)
can be destabilized via Hopf bifurcations. The time delay τ will be used as a bifurcation
parameter. This result is obtained in Theorem 4.1.

Recall that the non-trivial equilibrium x ≡ x∗ of equation (1) exists if and only if β0 >
δ > 0. In the following, without loss of generality we assume that

τmin = 0.

Again the results still hold when τmin > 0, but the proof is easier to understand when
τmin = 0.

7
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We look for purely imaginary roots of ∆(λ). Of course, we assume that β∗ < 0, otherwise
x ≡ x∗ is locally asymptotically stable. Let λ = iω, with ω ∈ R, be a purely imaginary
characteristic root of equation (5). Then, τ and ω satisfy the following system

{

δ + β∗
(

1 − 2C(τ, ω)
)

= 0,
ω + 2β∗S(τ, ω) = 0,

(13)

where

C(τ, ω) =
1

τ

∫ τ

0

cos(ωr)dr, S(τ, ω) =
1

τ

∫ τ

0

sin(ωr)dr.

First, one can see that ω = 0 cannot be a solution of (13). Otherwise

δ = β∗ < 0.

Moreover, if ω is a solution of system (13), then −ω is also a solution of (13). Hence, we only
look for positive solutions ω.

One can check that C(τ, ω) and S(τ, ω) are given, for τ > 0 and ω > 0, by

C(τ, ω) =
sin(ωτ)

ωτ
= K(ωτ), S(τ, ω) =

1 − cos(ωτ)

ωτ
,

where the function K is defined by (7). Consequently, system (13) can be rewritten as

K(ωτ) =
δ + β∗

2β∗
, (14)

cos(ωτ) − 1

(ωτ)2
=

1

2β∗τ
. (15)

Consider the sequence

{xk}k∈N := {x ≥ 0 ; x = tan(x)}, (16)

with
0 = x0 < x1 < · · · < xk < · · · .

In fact, one can check that

{xk}k∈N = {x ≥ 0 ; K ′(x) = 0}.

Moreover, for all k ∈ N
∗,

xk ∈ (kπ, kπ +
π

2
).

Define two sequences {uk} and {vk}, for k ∈ N, by

uk := cos(x2k+1) < 0, vk := cos(x2k) > 0.

Using the definition of xk, one can see that

uk = K(x2k+1) and vk = K(x2k).

Thus, the sequence {uk}k∈N is increasing with −1 < uk < 0 and the sequence {vk}k∈N is
decreasing with v0 = 1 and 0 < vk < 1/2 for k ≥ 1 (see Figure 1).
Moreover,

lim
k→+∞

uk = lim
k→+∞

vk = 0.
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Figure 1: The graphe of K(x).

Furthermore, one can check that, as soon as β∗ < 0,

δ + β∗

2β∗
< 1 = v0.

Finally, define a function h, for x ∈ [−1, 1/2), by

h(x) =
2(1 − x)

1 − 2x

and set
h(v0) = +∞.

We have the following results about the properties of the function h.

Lemma 4.1. Suppose that

h(u0) ≤ n
β0 − δ

β0
and δ + β∗ 6= 0.

(i) If δ + β∗ > 0, then there exists k ∈ N such that

h(uk) ≤ n
β0 − δ

β0
< h(uk+1).

(ii) If δ + β∗ < 0, then there exists k ∈ N such that

h(vk+1) ≤ n
β0 − δ

β0
< h(vk).

9
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Proof. Since the function h is increasing on the interval [−1, 1/2), we can see that

h(uk) ≤ n
β0 − δ

β0
< h(uk+1)

is equivalent to

uk ≤
δ + β∗

2β∗
< uk+1

and

h(vk+1) ≤ n
β0 − δ

β0
< h(vk)

is equivalent to

vk+1 ≤
δ + β∗

2β∗
< vk.

The lemma now follows.

Proposition 4.1. (i) If

h(uk) < n
β0 − δ

β0
< h(uk+1), k ∈ N,

then system (14)-(15) has exactly 2(k + 1) solutions (τ1,1, ω1,1), . . . , (τk+1,1, ωk+1,1) and
(τ1,2, ω1,2), . . . , (τk+1,2, ωk+1,2) with

{

ωl,1τl,1 ∈ ((2l − 1)π, x2l−1), for l = 1, . . . , k + 1,
ωl,2τl,2 ∈ (x2l−1, 2lπ), for l = 1, . . . , k + 1

and
0 < τ1,1 < · · · < τk+1,1 < τk+1,2 < · · · < τ1,2.

(ii) If

n
β0 − δ

β0
= h(uk), k ∈ N,

then system (14)-(15) has exactly 2k + 1 solutions (τ1,1, ω1,1), . . . , (τk+1,1, ωk+1,1) and
(τ1,2, ω1,2), . . . , (τk,2, ωk,2) with







ωl,1τl,1 ∈ ((2l − 1)π, x2l−1), for l = 1, . . . , k,
ωl,2τl,2 ∈ (x2l−1, 2lπ), for l = 1, . . . , k,
ωk+1,1τk+1,1 = x2k+1

and
0 < τ1,1 < · · · < τk+1,1 < τk,2 < · · · < τ1,2.

(iii) If

h(vk+1) < n
β0 − δ

β0
< h(vk), k ∈ N

∗,

then system (14)-(15) has exactly 2k + 1 solutions (τ1,1, ω1,1), . . . , (τk+1,1, ωk+1,1) and
(τ1,2, ω1,2), . . . , (τk,2, ωk,2) with







ω1,1τ1,1 ∈ (π/2, π),
ωl,1τl,1 ∈ (xl+1, (l + 2)π), for l = 2, . . . , k + 1,
ωl,2τl,2 ∈ ((l + 1)π, xl+1), for l = 1, . . . , k

10
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and
0 < τ1,1 < · · · < τk+1,1 < τk,2 < · · · < τ1,2.

(iv) If

n
β0 − δ

β0
= h(vk), k ∈ N

∗,

then system (14)-(15) has exactly 2k solutions (τ1,1, ω1,1), . . . , (τk,1, ωk,1) and (τ1,2, ω1,2),
. . . , (τk,2, ωk,2), with















ω1,1τ1,1 ∈ (π/2, π),
ωl,1τl,1 ∈ (xl, (l + 1)π), for l = 2, . . . , k,
ωl,2τl,2 ∈ ((l + 1)π, xl+1), for l = 1, . . . , k − 1,
ωk,2τk,2 = x2k

and
0 < τ1,1 < · · · < τk,1 < τk,2 < · · · < τ1,2.

(v) If

h(v1) < n
β0 − δ

β0
< h(v0),

then system (14)-(15) has a unique solution (τ1, ω1) such that τ1 > 0 and

ω1τ1 ∈ (0, π).

Proof. We only prove (i) when k = 0. The other cases can be deduced similarly. Assume
that

h(u0) < n
β0 − δ

β0
< h(u1).

This is equivalent to

u0 <
δ + β∗

2β∗
< u1.

The function K is strictly negative and decreasing on (π, x1) with K(y) ∈ (u0, 0) (see Figure
1). So the equation

K(y) =
δ + β∗

2β∗

has a unique solution y1 on the interval (π, x1). Set

τ1,1 =
(y1)

2

2β∗(cos(y1) − 1)

and ω1,1 = y1/τ1,1. Then, (τ1,1, ω1,1) is a unique solution of system (14)-(15) satisfying
ω1,1τ1,1 ∈ (π, x1).

Moreover, the function K is strictly negative and increasing on (x1, 2π) with K(y) ∈
(u0, 0), so the equation K(y) = (δ+β∗)/2β∗ has a unique solution y2 on the interval (x1, 2π).
Set

τ1,2 =
(y2)

2

2β∗(cos(y2) − 1)

and ω1,2 = y2/τ1,2. Then, (τ1,2, ω1,2) is a unique solution of system (14)-(15) which satisfies
ω1,2τ1,2 ∈ (x1, 2π).

11
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Furthermore, the function K is nonnegative on [0, π] and

u1 = K(x3) = min
x≥2π

K(x).

Therefore, system (14)-(15) has two solutions, (τ1,1, ω1,1) and (τ1,2, ω1,2).
Finally, using the fact that

cos(y1) ≤ cos(y2),

we obtain that
τ1,1 < τ1,2.

This completes the proof.

Lemma 4.1 and Proposition 4.1 give conditions for the existence of pairs of purely imag-
inary roots of equation (5). In the next proposition, we study the properties of the purely
imaginary roots of (5).

Proposition 4.2. Assume that there exists a τc > 0 such that equation (5) has a pair of
purely imaginary roots ±iωc for τ = τc with ωc > 0. If

ωcτc 6= xk for all k ∈ N,

where the sequence {xk}k∈N is defined by (16), then ±iωc are simple roots such that















dRe(λ)

dτ

∣

∣

∣

τ=τc

> 0, if ωcτc ∈ (x2k, x2k+1),

dRe(λ)

dτ

∣

∣

∣

τ=τc

< 0, if ωcτc ∈ (x2k+1, x2k+2), k ∈ N.

Proof. Assume that there exists a τc > 0 such that equation (5) has a pair of purely imaginary
roots ±iωc for τ = τc with ωc > 0. Then, ωcτc satisfies system (14)-(15).

Assume that
ωcτc 6= xk for all k ∈ N.

Let us show that ±iωc are simple characteristic roots of (5). Using (6), one can see that
±iωc are simple roots of (5) if

1 + 2β∗ ∂S

∂ω
(τc, ωc) 6= 0 or

∂C

∂ω
(τc, ωc) 6= 0.

We will show that
∂C

∂ω
(τc, ωc) 6= 0.

A simple computation shows that

∂C

∂ω
(τc, ωc) =

g(ωcτc)

ω2
cτc

,

where the function g is defined by

g(x) = x cos(x) − sin(x) for x ≥ 0.

One can check that g(x) = 0 if and only if there exists a k0 ∈ N such that x = xk0
. Moreover,

g(x) > 0 if and only if x ∈ (x2k+1, x2k+2), k ∈ N.

12
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This yields that
∂C

∂ω
(τc, ωc) < 0 if ωcτc ∈ (x2k, x2k+1)

and
∂C

∂ω
(τc, ωc) > 0 if ωcτc ∈ (x2k+1, x2k+2).

Hence, ±iωc are simple characteristic roots of (5).
Let λ(τ) = µ(τ) + iω(τ) be a characteristic root of (5) such that λ(τc) = ±iωc. By

separating the real and imaginary parts, we obtain that















µ(τ) + δ + β∗ −
2β∗

τ

∫ τ

0

e−µ(τ)r cos(ω(τ)r)dr = 0,

ω(τ) +
2β∗

τ

∫ τ

0

e−µ(τ)r sin(ω(τ)r)dr = 0.

We denote by µ′(τ) (respectively ω′(τ)) the first derivative of µ(τ) (respectively ω(τ)) with
respect to τ . For τ = τc, we obtain that

µ′(τc)
[

1 + 2β∗ ∂S

∂ω
(τc, ωc)

]

= 2β∗ ∂C

∂ω
(τc, ωc)ω

′(τc) +
2β∗

τc

(

cos(ωcτc) − C(τc, ωc)
)

(17)

and

ω′(τc)
[

1 + 2β∗ ∂S

∂ω
(τc, ωc)

]

= −2β∗∂C

∂ω
(τc, ωc)µ

′(τc) +
2β∗

τc

(

S(τc, ωc) − sin(ωcτc)
)

.
(18)

We consider two cases. First, assume that

1 + 2β∗ ∂S

∂ω
(τc, ωc) = 0. (19)

One can verify that

1 + 2β∗ ∂S

∂ω
(τc, ωc) = 2 + (δ + β∗)τc.

Consequently, (19) is equivalent to

τc = −
2

δ + β∗
. (20)

Then, it follows from equation (18) that

∂C

∂ω
(τc, ωc)µ

′(τc) =
S(τc, ωc) − sin(ωcτc)

τc
.

Moreover, by using (14) and (15), we have

S(τc, ωc) − sin(ωcτc)

τc
=

1 −
(

cos(ωcτc) + ωcτc sin(ωcτc)
)

ωcτ2
c

= −
δ + β∗

4β∗
ωc.

13
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Hence, (20) implies that
∂C

∂ω
(τc, ωc)µ

′(τc) =
ωc

2β∗τc
< 0.

Since ∂C
∂ω (τc, ωc) 6= 0, we have

µ′(τc) 6= 0.

Furthermore, the sign of µ′(τc) is the same as the sign of −∂C
∂ω (τc, ωc).

We now assume that

1 + 2β∗ ∂S

∂ω
(τc, ωc) 6= 0.

Then, by using (17) and (18), we obtain that µ′(τc) satisfies

µ′(τc)
[(

1 + 2β∗
∂S

∂ω
(τc, ωc)

)2

+
(

2β∗ ∂C

∂ω
(τc, ωc)

)2]

=
2β∗

τc

[

2β∗ ∂C

∂ω
(τc, ωc)

(

S(τc, ωc) − sin(ωcτc)
)

+
(

1 + 2β∗ ∂S

∂ω
(τc, ωc)

)

(

cos(ωcτc) − C(τc, ωc)
)

]

.

Using the definitions of C and S, one can check that

∂C

∂ω
(τc, ωc)

(

S(τc, ωc) − sin(ωcτc)
)

+
∂S

∂ω
(τc, ωc)

(

cos(ωcτc) − C(τc, ωc)
)

= 0.

Hence,

µ′(τc)
[(

1 + 2β∗ ∂S

∂ω
(τc, ωc)

)2

+
(

2β∗ ∂C

∂ω
(τc, ωc)

)2]

=
2β∗

τc

(

cos(ωcτc) − C(τc, ωc)
)

.

Notice that
cos(ωcτc) − C(τc, ωc)

τc
=

g(ωcτc)

ωcτ2
c

=
ωc

τc

∂C

∂ω
(τc, ωc) 6= 0.

Since 1 + 2β∗ ∂S

∂ω
(τc, ωc) 6= 0, it follows that

(

1 + 2β∗ ∂S

∂ω
(τc, ωc)

)2

+
(

2β∗ ∂C

∂ω
(τc, ωc)

)2

> 0.

Consequently, µ′(τc) 6= 0, and the sign of µ′(τc) is the same as the sign of −∂C
∂ω (τc, ωc).

In summary, we have obtained that, for τ = τc, equation (5) has a pair of simple purely
imaginary roots ±iωc such that















dRe(λ)

dτ

∣

∣

∣

τ=τc

> 0, if ωcτc ∈ (x2k, x2k+1),

dRe(λ)

dτ

∣

∣

∣

τ=τc

< 0, if ωcτc ∈ (x2k+1, x2k+2).

This completes the proof.

Remark 1. If there exists a k ∈ N
∗ such that

ωcτc = xk,

14
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then either ±iωc are not simple roots of (5) or

dRe(λ)

dτ

∣

∣

∣

τ=τc

= 0.

Using a similar argument as in the proof of Proposition 4.1, we obtain that

∂C

∂ω
(τc, ωc) = 0.

Thus, if

τc = −
2

δ + β∗
,

then ±iωc are not simple roots of (5). If

τc 6= −
2

δ + β∗
,

then
dRe(λ)

dτ

∣

∣

∣

τ=τc

= 0.

In the next theorem, we show that there exists a Hopf bifurcation at the non-trivial
equilibrium x ≡ x∗ of equation (1).

Theorem 4.1. Assume that

h(u0) ≤ n
β0 − δ

β0
and δ + β∗ 6= 0.

Then a Hopf bifurcation occurs at x ≡ x∗ for τ = τ0 := minωcτc 6=xk, k∈N τc, where (τc, ωc) are
solutions of (14)-(15), defined in Proposition 4.1. When 0 ≤ τ < τ0, the equilibrium x ≡ x∗

is locally asymptotically stable and it is unstable while τ0 ≤ τ ≤ τl, where τl is the larger
value of τc such that ωcτc ∈ (x2k, x2k+1), k ∈ N.

Proof. We first check that x ≡ x∗ is locally asymptotically stable when τ ∈ [0, τ0). Notice
that when τ ∈ [0, τ0), equation (5) does not have purely imaginary roots. Let τ∗ > 0 be
small enough and fixed. Assume that, for τ ∈ (0, τ∗), equation (5) has a characteristic root
λ(τ) = µ(τ) + iω(τ) with µ(τ) > 0. Separating the real and imaginary parts, we obtain

µ(τ) = −(δ + β∗) +
2β∗

τ

∫ τ

0

e−µ(τ)r cos(ω(τ)r)dr

and

ω(τ) = −
2β∗

τ

∫ τ

0

e−µ(τ)r sin(ω(τ)r)dr.

We deduce that, for τ ∈ (0, τ∗),

|µ(τ)| ≤ |δ + β∗| − 2β∗ and |ω(τ)| ≤ −2β∗.

Consequently,
lim
τ→0

τµ(τ) = 0 and lim
τ→0

τω(τ) = 0.

Integrating by parts, we obtain

2µ(τ) = −(δ + β∗) + 2β∗e−τµ(τ)K(τω(τ)).

15



M. Adimy, F. Crauste and S. Ruan A model of pluripotent stem cell dynamics

Since µ(τ) > 0, we have for τ ∈ (0, τ∗) that

−(δ + β∗) + 2β∗e−τµ(τ)K(τω(τ)) > 0.

When τ tends to zero, we obtain
β∗ − δ ≥ 0.

However, β∗ − δ < 0. This is a contradiction. Therefore, for τ ∈ (0, τ∗), µ(τ) < 0. Applying
Rouché’s Theorem [5, p.248], we obtain that all characteristic roots of (5) have negative real
parts when τ ∈ [0, min(τc)). Therefore, x ≡ x∗ is locally asymptotically stable.

Using Lemma 4.1, Propositions 4.1 and 4.2, we conclude to the existence of τl. This
concludes the proof.

We illustrate the results of Theorem 4.1 in the next corollary.

Corollary 4.1. Assume that the parameters δ, β0 and n are given by (2). Then there exists
a unique value τc > 0 such that a Hopf bifurcation occurs at x ≡ x∗ when τ = τc. When
τ < τc, the equilibrium is locally asymptotically stable and becomes unstable when τ ≥ τc.
Moreover, when τ = τc, equation (1) has a periodic solution with a period close to 46 days
(see Figure 2). The value of τc is approximately given by

τc ≃ 18 days.

Proof. With the values given by (2), we obtain

n
β0 − δ

β0
≃ 2.9153 > h(v1) ≃ 2.3455.

Hence, Proposition 4.1 implies that the system (14)-(15) has a unique solution (τc, ωc) with
τc > 0 and ωcτc ∈ (0, π). From Theorem 4.1, we know that a Hopf bifurcation occurs at
x ≡ x∗ for τ = τc. The equilibrium is locally asymptotically stable when τ < τc and becomes
unstable when τ ≥ τc. Consequently, for τ = τc, equation (1) has a periodic solution with a
period close to 2π/ωc. One can check that

τc ≃ 18 days and ωc ≃ 0.138.

Computer simulations confirm our analysis (see Figure 2).

As mentioned earlier, the results in Theorem 4.1 still hold when τmin > 0. However, in
this case, the computations in the proof of Theorem 4.1 are much more complicated.

5 Discussion

Hematological diseases have attracted a significant amount of modeling attention because a
number of them are periodic in nature (Haurie et al. [8]). Some of these diseases involve
only one blood cell type and are due to the destabilization of peripheral control mechanisms,
e.g., periodic auto-immune hemolytic anemia (Bélair et al. [2] and Mahaffy et al. [13]).
Such periodic hematological diseases involve periods between two and four times the bone
marrow production/maturation delay. Other periodic hematological diseases, such as cyclical
neutropenia (Haurie et al. [8]), involve oscillations in all of the blood cells and very long period
dynamics on the order of weeks to months (Fowler and Mackey [6] and Pujo-Menjouet et al.
[14]) and are thought to be due to a destabilization of the pluripotent stem cell compartment
from which all types of mature blood cells are derived.
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Figure 2: With the values given by (2) and θ = 1.62×108 cells/kg, equation (1) has a periodic
solution for τ = 18.2 days. This solution has a period about 50 days. One can see that the
solution reaches a limit cycle.
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We have studied a scalar delay model that describes the dynamics of a pluripotent stem
cell population involved in the blood production process in the bone marrow. The distributed
delay describes the cell cycle duration. We established stability conditions for the model
independent of the delay. We have also observed oscillations in the pluripotent stem cell
population through Hopf bifurcations. With parameter values given in Mackey [9, 10], our
calculations indicate that the oscillatory pluripotent stem cell population involves a period
of 45 days.

It will be very interesting to study the dynamics of the two dimensional systems (Mackey
[9, 10], Mackey et al. [12], Pujo-Menjouet et al. [14]) modeling the proliferating phase cells
and resting phase cells with distributed delays. We leave this for future consideration.
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