637 research outputs found

    Postharvest feed handling and utilization innovation

    Get PDF

    Feed and forage development and scaling in the Ethiopian highlands

    Get PDF

    Chomo grass (Brachiaria humidicola) to rehabilitate degraded land and manage termites

    Get PDF
    This brief is prepared in English, Amharic and Oromiffa languages

    Deep learning with convolutional neural networks for decoding and visualization of EEG pathology

    Get PDF
    We apply convolutional neural networks (ConvNets) to the task of distinguishing pathological from normal EEG recordings in the Temple University Hospital EEG Abnormal Corpus. We use two basic, shallow and deep ConvNet architectures recently shown to decode task-related information from EEG at least as well as established algorithms designed for this purpose. In decoding EEG pathology, both ConvNets reached substantially better accuracies (about 6% better, ~85% vs. ~79%) than the only published result for this dataset, and were still better when using only 1 minute of each recording for training and only six seconds of each recording for testing. We used automated methods to optimize architectural hyperparameters and found intriguingly different ConvNet architectures, e.g., with max pooling as the only nonlinearity. Visualizations of the ConvNet decoding behavior showed that they used spectral power changes in the delta (0-4 Hz) and theta (4-8 Hz) frequency range, possibly alongside other features, consistent with expectations derived from spectral analysis of the EEG data and from the textual medical reports. Analysis of the textual medical reports also highlighted the potential for accuracy increases by integrating contextual information, such as the age of subjects. In summary, the ConvNets and visualization techniques used in this study constitute a next step towards clinically useful automated EEG diagnosis and establish a new baseline for future work on this topic.Comment: Published at IEEE SPMB 2017 https://www.ieeespmb.org/2017

    Assessment of livestock production and feed resources at Kerekicho, Angacha district, Ethiopia

    Get PDF
    This document is a product of the Feed the Future Innovation Lab for Small-Scale Irrigation (ILSSI). This is a five-year project that aims to benefit farmers of Ethiopia, Ghana and Tanzania by improving effective use of scarce water supplies through interventions in small-scale irrigation. It is a part o

    Assessment of livestock production and feed resources at Robit Bata, Bahir Dar, Ethiopia

    Get PDF

    Dissipation in the superfluid helium film

    Get PDF
    Experimental apparatus to study dissipation in the saturated superfluid helium film has been developed. The low temperature parts comprise a sealed cell containing liquid helium, to which are affixed two parallel plate capacitors, functioning both as liquid reservoirs and as a way of measuring the liquid level. A small hole in a thin plastic film located in the flow path between the two capacitors forms the flow-limiting constriction. This arrangement introduces large velocity gradients in the vicinity of the hole. Film flow is initiated and sustained by an electric field in one capacitor, generated by a purpose-built Film Drive Unit (FDU) and a high-voltage amplifier. Detailed study of the helium film under steady flow conditions was not possible, but those results which were obtained indicate that the transfer rate is about 30% higher than was anticipated. By applying positive feedback to the film through the FDU, the inertial oscillations can be studied over many cycles. This new method has revealed some unexpected results, and a variety of types of oscillation behaviour have been observed. A theoretical model of dissipation has been developed, based on the premise that vortices in the film are oriented perpendicular to the film plane and are free to move and cross streamlines. According to this model, the large steady film transfer rates are due to the separation of the region of dissipation and the region of maximum velocity, an effect caused by the radial-flow geometry. Numerical simulation of the inertial oscillations using the model reproduces some of the behaviour observed experimentally, provided that the rate of vortex creation is taken to be a step function of the velocity. The shape of the liquid helium surface tension meniscus has been calculated numerically. The calculation is valid for the moving and static film in the absence of dissipation

    Guidelines on the utilization of cultivated oat-vetch and tree lucerne fodder in the Africa RISING sites of the Ethiopian highlands

    Get PDF
    United States Agency for International Developmen
    • …
    corecore