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ABSTRACT

Experimental apparatus to study dissipation in the saturated
superfluid helium film has been developed. The low temperature
parts comprise a sealed cell containing liquid helium, to which
are affixed two parallel plate capacitors, functioning both as
liquid reserveirs and as a way of measuring the liquid level, A
small hole in a thin_plastic film located in the flow path
between the two capacitors forms the flow-limiting constriction.
This arrangement introduces large velocity gradients in the
vicinity of the hole. Film flow is initiated and sustained by an
electric field in one capacitor, generated by a purpose-built
Film Drive Unit (FDU) and a high~voltage amplifier.,

Detailed study of the helium film under steady flow
conditions was not possible, but those results which were
obtained indicate that the transfer rate is about 30% higher than
was anticipated. By applying positive feedback to the film
through the FDU, the inertial oscillations can be studied over
many cycles. This new method has revealed some unexpected
results, and a variety of types of oscillation behaviour have
been observed.

A theoretical model of dissipation has been developed, based
on the premise that vortices in the film are_oriented
perpendicular to the film plane and are free to move and cross
streamlines. According to this model, the large steady film
transfer rates are due to the separation of the region of
dissipation and the region of maximum velocity, an effect caused

by the radial-flow geometry. Numerical simulation of the




inertial oscillations using the model.reproduces some of the
behaviour observed experimentally, provided that the rate of
vortex creation is taken to be a step function of the velocity.
The shape of the liquid helium surface tension meniscus has
been calculated numerically. The calculation is valid for the

moving and static film in the absence of dissipation.
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CHAPTER 1
AN INTRODUCTION TO THE HELIUM FILM

1.1 Properties of the Helium Film

Any surface in thermal equilibrium with helium vapour at a
sufficiently low temperature will have adsorbed upon it a thin
film of helium atoms, held against the surface by van der Waals
forces. The film thickness varies with temperature T and
pressure P, If the system point (T,P) is on the vapour-pressure
curve, the film is said to be "saturated", while if the system
point is within the vapour region of the P-T plane, the film is
said to be "unsaturated".

The thickness and density profile of the film have been
determined both experimentally and theoretically. The first one
or two atomic layers are solid, the remainder of the film being
in the liquid phase1'2. The saturated film thickness varies with
height above the level of bulk liquid in the system, and has been
measured 1n a variety of experiments. Jackson and co-
workers3#h5 found the film thickness d to be approximately 30nm
at a height of h=1em. The thickness decreased further up the

film according to the relationship:
d o pm1/n (1.2

where n was between 2.3 and 2.6, Anderson et al.6 found the same
formula fitted their results, with n=3.

The saturated film profile (1.1) can be derived
theoretically from the shape of the van der Waals potential.
Schiff7 and Frenke18 predict that the van der Waals potential
energy per unit mass W(d), where d is the distance from the

substrate, should be:
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W(d) = -a/d3 (1.2)

where a is called the van der Waals constant, and is substrate
dependent. Since in equilibrium, the chemical potential = gh~
a/d3 must be the same at the surface of the bulk liquid (where d

is infinite) and at the surface of the film, we have that:
d = (gh/a)=1/3 (1.3)

which agrees with (1.1) if n=3.

The film thickness is related to the pressure of gas at the
film surface. At a height h above the bulk liquid surface, the
pressure is P = Ppexp[-mgh/kpT] wheré Py is the saturated vapour
pressure and m is the mass of a helium atom. Since the vapour at
height h must be in equilibrium with the film at the same height,

we eliminate h from this equation using (1.3) and obtain:
~kgT 1n(P/Py) = a/md3 (1.4)

This equation is known as the Frenkel-Halsey-Hill isothermg, and
is va1id19:11:12 £or both the saturated and unsaturated film
(which is just the same as a saturated film at a very large
height h).

Although the liquid helium forming the film is only about
100 atoms thick, it still behaves like bulk liquid helium in many
ways. It undergoes a superfluid transition which in the
saturated film occurs at the bulk lambda point T,. Because the
film is so thin, the normal component is locked to the substrate
due to its viscosity, while the superfluid is free to move.

In the saturated film (away from the substrate and far from
T\), the superfluid fraction /0 is believed to be the same as
that in the bulk. However, Ginzburg and Pitaevskii13

demonstrated that it must fall to zero close to the substrate.




As in the case of bulk liquid helium, the flow of the film
is governed by the two=fluid hydrodynamic equations1“, with the
constraint that vn=0. It is useful to quote the two most

important equations here:

9,0513/91: + V,Osls =0 (1.5)
Dsls/Dt +Vu=0 (1.6)

where Dy/Dt = /0t + ygVis the co-moving derivative (derivative
"moving with" the superfluid). Equation (1.5) is the law of mass
conservation, while (1.6) expresses the fact that superfluid flow
is driven by a chemical potential gradient. Since v, is zero,
there is no entropy transport through the film.

The terms contributing to the chemical potential are
important, since they affect the superfluid velocity.

14

Putterman'™ gives the following terms:

M= L+ Plo = (yyw)90,/2p - ST (1.7)

where!l.représents all the potential fields experienced by the
fluid, s is the specific entropy of the fluid, and P is the
pressure., (L comprises gravity (gh) and the van der Waals
potential (-a/d3) in the case of the helium film. Other terms
which will contribute to the chemical potential at various points
in this thesis are an electrostatic term (Chapters 3 and 4), and

a surface tension term (Chapter 8).

1.2 Saturated Film Flow
When there is a chemical potential difference Altbetween two
ends of a helium film, equation (1.6) states that the superfluid

will accelerate towards the end with the lower chemical

potential. Such a au might arise from a difference in the
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FIGURE 1.1 Beaker film flow




gravitational potential between the two ends. The typical
situation in which this occurs is illustrated in figure 1.1 and
is called "beaker film flow". This type of experiment, or a
slight variant where two reservoirs of similar s}ze are connected
by a film, is the most common method of stu@%ng the flowing
saturated helium film.

The first experiments specifically on beaker film flow were
those by Daunt and Mendelssohn15’16. They observed that the
volume rate of flow V (cm3s‘1) from one reservoir to the other
(as deduced from the rate of change of liquid levels) was
directly proportional to the minimum perimeter of the flow path
between them, but was insensitive to the length of the path.

Since V is proportional to the minimum perimeter Pmin» Fthe

ratio

is usually used when quoting film flow results. It is called the
film transfer rate, and is usually in the range 6 to 15 x 10~5

241

em“s™'. From the conservation of mass, one can infer the

superfluid veloecity in the film:

Vg =00 pmin//osdp (1.9)

where p and d are the perimeter and film thickness at the point
where we wish to calculate vg. If p=p,;i, and d=30nm, the film
velocity is in the range 20 to 50 cm gl

The early experiments on film flow by Daunt and
Mendelssohn'5:1®, Mendelssohn and White'7, and Atkins'®
demonstrated two important effects., The first is that the film
appears to flow at a constant "eritical™ velocity, independent of
the driving chemical potential difference. However, Atkins18

noted that the transfer rate fell when the liquid levels were
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very close to each other. The second effect is that, as the
liquid levels in the two reservoirs approach each other, they
commence to oscillate about their eventual equilibrium position.
The oscillations decay away, leaving the liquid levels
stationary.

We first of all consider the critical velocity Vgoy Or rather
the critical transfer rate J; (since the film thickness is not
usually measured in such experiments). The transfer rate is
limited by the critical velocity at the point in the flow path
where the film has minimum cross-sectional area. In beaker flow
experiments, this usually means the inside of the beaker rim.
The approximate temperature dependence of C is shown in figure
1.2.

Despite the reproducibility implied by figure 1.2, almost
all investigators have found that the transfer rate varies from
experiment to experimeht, and from day to day and run to run in a
given experiment, by anything up to a factor of two. It is found
that O depends on the height of the beaker rim above the liquid
level18’19, the presence of solid gas or other contaminants on
the substratezo, the substrate roughne3521, the method of filling
the beaker22’23, the thermal insulation between the two

24

reservoirs®’, whether the flow was into or out of the beaker23,

the 3He concentration25

, and the presence of vibration.

Some of these effects were explained on the basis of a
constant critical velocity Vo, the variation in o, being caused
by variations in the other parameters on the RHS of equation
(1.9). Contamination of the substrate with solid air has been

shown to increase the film thickness2?

, and this resulted in the
increased transfer rates observed by Bowers and Mendelssohnzo.

The difference between a polished and a rough substrate was
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investigated by Smith and Boorse21, who found that the increase
of 20% in average transfer rate in the latter case could be
accounted for by the increase in the microperimeter of the
surface.,

However, the critical velocity has been shown to depend
explicitly on the film thickness d. Allen and Armitage19 found
that for flow out of a beaker, the dependence of transfer rate on

the rim height h above the beaker level was:

Using equations (1.3) and (1.9), we obtain for the critical

velocity at the beaker rim:

g o a1/

This is in agreement with the work of van Alphen et al.T on film
flow and bulk flow in narrow channels.

Atkins18 and Selden et 31,28 have found that in contrast to
the case of inflow, the transfer rate out of a beaker is
dependent on the level difference and the history of the film, Oc
being much larger near the start of the flow. This effect
remains unexplained.

Poor thermal contact between the two reservoirs will permit
the existence of a temperature difference between them. This has
two effects: there will be a fountain-pressure contribution to
the chemical potential difference, and distillation of liquid
from one reservoir to the other will alter the apparent film
transfer rate. Selden and Dillinger‘24 describe the latter
effect, and some experimenters have used the former effect as the
primary source of chemical potential difference®?:30,

Esel'son and Laserev22 and Aller123’31 found that a plunge-
filled beaker emptied faster than if the beaker had been filled
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by film flow. Allen suggested that plunge filling created
turbulence in the beaker, affecting the transfer rate. Selden
and Dillingerzu found that mechanically induced turbulence in the
source reservoir increased the transfer rate, while turbulence in
the sink reservoir reduced the rate. This phenomenon may be
connected with the common observation that vibration tends to
increase the transfer rate.

Even when the most stringent precautions are taken to
ensure good thermal contact between the reservoirs and to
eliminate contamination, vibration and turbulence, it is still
found that at a given temperature, level difference and rim
height, there is significant variation in transfer rate. The
common assumption that the transfer rate is a well-defined
function of these parameters is thus not valid, as Harris-Lowe
has pointed out32,

Yet another transfer rate phenomenon which has been noted by
a number of workers19’28’33’3u'35’36 is a spontaneous abrupt
transition from one flow rate to another, usually lower, rate.
Some workers33’34 have reported that the jumps in flow rate are
of uniform size (about 0.5 x 102 cm25‘1), suggesting that o is
quantised in some way.

We now turn to consider the oscillations which occur as the
liquid levels approach each other, The kinetic energy of the
film causes the levels to overshoot their equilibrium position,
initiating damped oscillations. They are referred to as inertial
or U-tube oscillations, and their frequency may be calculated by
taking the time derivative of the energy equation in the usual
way. Details of the derivation are given in section 4.4; the

result is:
w? = p8/0 IA (1.10)
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where A is the "reduced" area of the reservoirs and I is an

integral along the flow path from one reservoir to the other:
I= jdl/d(l)p(l)

The oscillation period can thus yield information on the film
thickness, and Atkins37 exploited this to obtain an estimate for
the film thickness as a function of height.

The oscillation amplitude varies depending on the geometry
of the apparatus. Unless the film flow path is exceptionally
long and the reservoir areas small (as in the case of the Leiden
experiments38), the amplitude is usually less than Tmm. As the
oscillations progress, their amplitude falls off exponentially
with time39’40’41, indicating the presence of a damping force
proportional to the velocity in the equation of motion of the
film.

The source of this damping force has now been conclusively
shown to be the entropy term sT in the chemical potential
(1 7)“2 43, iy "5, Robinson™® derived the value of the damping
constant., As the superfluid flows from.one reservoir to the
other, the change in specific entropy results in a temperature
difference between them. If the reservoirs are in thermal
contact, there will be an irreversible heat flow between them,
resulting in a net increase in the entropy of the system and
therefore the temperature. This extra thermal energy is removed
from the oscillations. The effect is called thermal or Robinson
damping, and the oscillation decay rate is dependent on the
thermal conduction between the reservoirs.

One other phenomenon in the helium film should also be
mentioned. The thickness of the flowing film is predicted to be

less than the static film thickness. This was pointed out by

1.8
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Kontorovichwr, and it is usually referred to as the film~thinning
or Kontorovich effect. Substituting (1.7) with y,=0 into the

superfluid equation of motion (1.6), and using the relationship

Pn*Ls =/o , We obtain:

Dy /Ot +9p = 0 (1.11)
where ,u' = v32/03/2/0 + ()L + Pjo - sT (1.12)

f,L/ is often loosely referred to as the chemical potential. Using
equations (1.2) and (1.3) we see that the flowing film will be

thinner by approximately:
Ad = Gz/o/ghd/os

The work of Graham and Vittoratosu’e, of Flint and Hallock51,
and of Eckholm and Hallock™9750 (on the unsaturated £ilm), has
shown that film thinning occurs and is of the predicted

magnitude.

1.3 Vortices

The hydrodynamics of superfluid helium permits the existence
of vortex lines, similar to the vortex lines of classical
hydrodynamics. Onsager52 and Feynmans3 independently suggested
that the circulation of vortex lines in liquid helium would be
quantised. This can be understood by considering the complex
order parameter W(n) introduced by Ginzburg and Pitaevskii13,
which is in a sense the "wave function" of the superfluid

component. It can be written:

V() = 7 () explidp(r)]

' (1.13)
where /Og = 77(,:.)2 ;o ¥g = (/m)Vp(r)

and where m is the mass of a helium atom. For a vortex, the

lines of equal phasec{) radiate outwards from the vortex core,
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where Wis zero. Integrating the above expression for y, round

the vortex line, we obtain for the circulation:
K = (m) AD

whereACP is the change in phase on moving right round the vortex
and back to the starting point. Since 7.}/ is single-valued, ACID
must be an integral multiple (n) of 2T, and thus the circulation

must be quantised in units of X = h/m = 9.97x10"u em?s™1:
K=n%¥=nh/m (1.14)

In a classic experiment, Vinen54 measured the circulation
round a thin wire in liquid helium, and found that it was either
zero, or h/m, Similar experiments were performed by Whitmore and
Zimmermann55, who found the same value for X, and observed a
wider range of quantum numbers n. The vortex ring experiments of
Rayfield and Reif5® also support (1.14).

We now consider a mechanism known as Anderson phase
slippage, through which vortex motion can give rise to a chemical
potential gradient57. Let us consider two points 1 and 2 on a
streamline of ¥g. If we substitute yg = (h/m)Vdinto the
superfluid equation of motion (1.11) and integrate along the

streamline from 1 to 2, we obtain:
(W/m) d@p-P)zdt = =(th=py) (1.15)

Thus, a chemical potential difference always involves a changing
phase difference, or "phase slip". Such slippage can arise either
from a non-zero 3_\15/3‘0, or from vortex motion, as we shall now
show,

Suppose that a vortex line of unit circulation starts from

far to one side of our streamline and moves so as to cross it




between 1 and 2, ending up far away on the other side of the
streamline. The phase difference between 1 and 2 will change by
+21l, the sign of the change depending on the sense of the vortex
circulation and the direction in which it crosses the streamline.
If n vortices per second (all of the same sign) cross the
streamline between 1 and 2, then the rate of phase change will be

-2, and equation (1.15) becomes:

This equation is sometimes known as the Anderson r'elation57. If
there is no other source of chemical potential difference, the
vortex motion will cause y5 to increase or decrease, depending on
the vortex sign and direction of movement.

One mechanism by which vortices can cross streamlines
depends on the interaction of the normal fluid with the vortex
core. When a vortex line moves relative to the normal fluid, the
thermal excitations scatter off the vortex core, causing the line
to experience a net force per unit length58. The component of
this force parallel to the vortex line has been shown59’60 to be
very small. The magnitude of the force was deduced by Rayfield
and Re:i.fs6 from their experiments on the motion of charged vortex
rings. By measuring the energy loss of the rings as they drifted
relative to the normal fluid, they found that the force was
directed antiparallel to Y1 -¥n (where ¥y, is the vortex line
velocity) except near to T,, when there was a component
perpendicular to both the vortex core and to y;-¥, We are
concerned here only with the first-mentioned component.

If ¥,=0 (as in a film or narrow channel), the normal fluid
interaction will drag on the vortex, so that it moves more slowly
than the superfluid. This induces a Magnus force on the vortex
14

line'”, perpendicular to ¥;-¥s. The net effect is that the

1.1
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vortex moves forward at an angle to y_, the perpendicular
component of its velocity causing it to cross streamlines. This
subject is dealt with more fully in section 6.1.

We have thus seen that there exists a mechanism by which
vortices can cross streamlines, producing a chemical potential
diffeerence. However, very little direct experimental evidence is
available to support equation (1.16). Richards and Anderson61
studied the flow of bulk helium through a small hole in a thin
nickel foil, and observed step-like behaviour in the decay of the
chemical potential difference across it. Their results, however,
were not conclusive, and further work would be required to
demonstrate the correctness of (1.16).

Despite the lack of direct experimental evidence, (1.16) is
now generally accepted as a necessary condition to be met by any
theory which attempts to explain.critical behaviour in superfluid
flow,

1.4 Dissipation

In a typical beaker film-flow experiment, the investigator
creates a level difference between two reservoirs of liquid
helium, thus imparting potential energy to the system. When the
experiment is over and the levels are again at equilibrium, this
energy will (presumably) have been dissipated as heat, causing a
very small rise in the temperature of the system. The term
"dissipation" in the context of superfluid flow is generally
faken to mean the process by which the energy imparted to the
system is converted to heat.

It is clear that the experimental observations of critical
velocity behaviour are in serious conflict with equations (1.11)
and (1.12), in that a constant velocity is observed when there is

apparently a chemical potential gradient. If equation (1.15) is
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taken as the basic physical law, rather than (1.11), then the
crossing of streamlines by vortices can compensate for the
experimentally observed chemical potential difference Afte Note
that when vg is constant, the rate of energy loss is proportional
to vg4u, and it is therefore usual to speak of AMas the
dissipation. When the driving force is purely a level difference
Ah, then4ﬂ.=gAh, and one can speak interchangeably of -the
dissipation or the level difference.

Landau62 was the first to attempt to explain the dissipation
mechanism in superfluid flow. His argument, involving roton
creation when the Landau critical velocity is exceeded, is well
known. However, the Landau velocity is two to three orders of
magnitude higher than the observed critical velocities.

Atkin563 applied Landau's criterion to the generation of a

vortex ring. He obtained a critical velocity of the form:
Vo = (Wmr) 1n(1.4r/a)

where r is the maximum radius at which vortex rings could be
created in a given experiment, and a is the vortex core radius.
Feynman53 obtained a similar result. If r is of the order of the
channel diameter in bulk flow experiments, then approximate
agreement with experiment is obtained1. However, the equation
does not explain the observed temperature dependence of the
transfer rate, nor is it clear how vortex rings of the required
macroscopic size can suddenly appear in the liquid.

Glaberson and Donnellysu suggested a mechanism which
overcame this problem. They showed that a vortex line with both
ends pinned on the walls of the channel could act as a "vortex
mill", generating macroscopic vortex rings. The predicted

critical velocity was essentially the same as the Atkins/Feynman
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value. Donnelly and Roberts65 éuggested that the vortex mill
would be temperature dependent.

Up to about 1968, all the models of dissipation removed
energy from the flow in order to create vortex lines or rings.
Campbe1166 showed that (based on his definition of the momentum
of a vortex ring) there is insufficient energy in the flow to
simultaneously create vortices, and satisfy the Anderson
condition. He pointed out that the energy lost to the normal
fluid due to vortex line/normal fluid interaction could
completely account for the dissipation. Theories which did not
explicitly show how the Anderson relation (1.16) was satisfied
were unacceptable.

However, the critical velocity is not the whole story of
dissipation in superfluid film flow. Atkins' observation18 that
the transfer rate was reduced when Ah was very small has
subsequently been observed by many workers67'68’69, and has led
to the classification of film flow into two regimes: critical and
sub-critical. In the sub-critical regime (which usually pertains
for Ah less than about 50um) the velocity rises rapidly with
increasing level difference. In the critical regime, there is
little or no increase in velocity with increasing level
difference.

It i$ often useful to plot transfer rate against level
difference, Figure 1.3 is an example of this kind of graph.
However, there is no agreement on the exact shape and size of the
curve at a given temperature, reflecting the observed
muttiplicity of transfer rates, The sub=-critical portion of the
curve is appropriate to the inertial oscillations; and can be
probed if Robinson damping is allowed for or is absent36’68.

The region in the film where dissipation occurs is of

interest. Workers at Los Alamos/0s71 developed a technique to
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probe the chemical potential at different parts of the film in a
beaker film flow experiment. For outflow, they found that
usually, all the chemical potential drop occurred at the inside
rim of the beaker, but that it could redistribute itself down the
inside wall of the beaker during a run, causing the transfer rate
to jump to a lower value in the manner reported by (eg) Allen and
Armitage19. For inflow, the dissipation region extended down the
inside wall of the beaker.,

We briefly mention one more recent theory due to Harris-

Lowe32

. He imagines a vortex line with one end pinned to the
substrate, which.trails downstream at an angle to y.. The theory
yields a prediction for the rate at which dissipation increases
above the critical velocity, and this is supported by the
experimental work of Turkington and Harris-Lowe 2, The theory
also offers a possible explanation of the observed abrupt
transfer rate changes.

Dissipation in film flow and channel flow is a complex
phenomenon, and none of the theories mentioned so far describe it
adequately. In the following chapter, we describe an important
theory which succeeds in explaining some of the results in
channel flow, but is less good in the saturated film. We also
describe a relatively new theory which successfully explains

superfluid onset and dissipation in the unsaturated film, and

which has relevance to the theoretical work in Chapters 6 and 7.
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CHAPTER 2

TWO THEORIES OF SUPERFLUID FLOW

2.1 The Thermal Fluctuation Theory

In the late 1960's and early 1970's, a theory of dissipation
in flowing superfluid helium was developed, based on the
generation of vortices as thermal fluctuations. This model
predicted a particular form for dissipation as a function of
superfluid velocity, and some experimental evidence appeared to
support the theory. In recent years however, the theory has lost
some of its popularity.

The standard review paper on the thermal fluctuation theory
(which has come to be referred to as the Iordansky~Langer-Fisher
or ILF theory) was published in 1970 by Langer and Reppy73.
Other important papers are those by Iordansky74, Langer and
Fisher75, and Langer76. The following summary relies mainly on
these papers.

In the ILF theory, superflow is regarded as a non=-
equilibrium phenomenon. A flowing superfluid is in a metastable
state, and may make an irreversible transition to a state of
lower energy and superfluid velocity. The mechanism by which
this transition takes place is assumed to be intrinsic to the
superfluid itself, independent of the nature of the flow path or
the walls of the container. Dissipation which has this property
is called intrinsic dissipation. This assumption means of course
that the theory (in its most general form) may be applied to bulk
flow of superfluid, superfluid flow in superleaks, and film flow.

An appropriate intrinsic transition mechanism to a state of
smaller vy involves the thermal nucleation of some suitable
excitation in the fluid., A similar situation obtains in the

condensation of a supersaturated vapour, where the nucleation of
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a sufficiently large liquid droplet will cause condensation to
occur. In either of these cases, the probability of a suitable
fluctuation occurring is just given by the Boltzmann factor,
exp(-E_/kpT), where E; is the energy of the fluctuation relative
to the background fluid.

The dissipative fluctuation is highly likely to involve some
form of vorticity, and the simplest localised flow pattern
containing vorticity is a vortex ring. A ring of circulation ¥,
oriented in a plane perpendicular to the externally imposed
superflow vy and moving against it with a velocity Vg, has

energy:
E = Ey - PgVs . (2.1

where the energy Eg, velocity vy and impulse pg of the ring

measured in the frame of reference of the superfluid are given

by:
vg = (7 =1/4) K/4 TR
Eg = (7 =T/8) O K2R/27T (2.2)
Po = Tog W

where §>=ln(8R/a), R = radius of vortex ring, and a = vortex core
radius. The total energy E(R,vg) is a minimum at some critical
ring radius R (vg). Below this radius, the ring will tend to
collapse, Above Ry, it is energetically favourable for the ring
to expand, crossing streamlines and causing dissipation. We can

therefore identify the activation energy as:
By = E(Ry) = (7 -1/M)(y -1/ P K3 /16Ty (2.3)

In this equation, 7 = 7(30), which can be shown to be

approximately temperature independent. This mechanism avoids
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Campbe11'565 objection, since the energy required to creaﬁe the
vortex ring at the critical radius comes from the thermal energy
of the fluid.

The rate of generation of fluctuations will be exp(-E,/kpT)
multiplied by some (unknown) attempt frequency per unit volume
/(T), times the system volume AL, where A is the area
perpendicular to the flow and L is the length of the flow path.
Each fluctuation will cross all the streamlines in the flow once
before it annihilates at the perimeter of the flow path. For
each fluctuation, the decrease in the flow velocity will be, from

equations (1.6) and (1.16),
Avg = = /L

The rate of decrease of the superfluid velocity will therefore

be:
dvg/dt = «KAU(T) expl-E,(vg)/kpT] (2.4)

Using (2.3), we obtain the dissipation equation of the ILF

theory:
dvg/dt = -HA AT) expl-vp/vg] (2.5)

where VB(T) is a "barrier" velocity having the temperature
dependence of /OS/T. For vg<<vg, this function increases
extremely rapidly with increasing Vge L/(T) is expected to be
only weakly temperature dependent.

There are two interesting consequences of this equation. In
the first place, (2.5) does not predict a unique critical
velocity. The interpretation of the observed critical velocities
is that they correspond to a value of dvg/dt which is lower than
can be detected in that particular experiment. Secondly, (2.5)

exhibits "saturation of dissipation", in that for sufficiently
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large vg (O>vp), the dissipation becomes velocity independent.

We shall now discuss some of the experiments which test the
ILF theory. Reppy and co-WOl"ker‘873’77’78’79’80’81 performed
experiments on the persistent flow of bulk superfluid helium,
using a "superfluid gyroscope. An annular container was filled
with superleak material, immobilising the normal fluid. The
gyroscope was spun up to a known angular velocity at T>T,, and
then cooled through the lambda point before being brought to
rest. The superfluid continued to rotate, and its angular
momentum and superfluid density could be measured. They were
thus able to determine the average superfluid velocity and its
decay rate (2.4) as a function of time.

The persistent currents were found to decay logarithmically

with time:

vg = Vg = o<“1ln(t/to) (2.6)

where tg and X are constants and v =vg at t=tg. Dflwas found to
be small (about 5% per decade of time).

Langer and Reppy73 showed that this behaviour was predicted
by the theory. Using the experimental value of X, they were
able to deduce the magnitude of Ea(vs,'l‘), which they found to be
smaller by nearly a factor of 10 than their theoretical
prediction based on the experimental sensitivity. Their critical
velocities were also approximately ten times smaller than their

theoretical estimate.

A number of other experiments have tested the ILF prediction

(2.5) in bulk superflow. Notar'y382 measured the
pressure/velocity relationship for bulk helium transport through
a porus mica plate. His results agreed with (2.5), and yielded a
temperature-independent attempt frequency ./ The temperature
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dependence of vp was found to be correct, but as with the
persistent current experiment, E, was found to be too small, by a
factor of approximately 20.

Hes383 studied superflow through 10um diameter “orifices'".
(Such "orifices" are strictly speaking narrow channels, since
their length is typically several tens of/unJ He too found the

o4 observed

appropriate temperature dependence of Vpe Banton
various flow regimes through 2£yun and 5Fm diameter "orifices",
Some of his data corresponded to (2.5), and he obtained values of
E, in agreement with those of Notarys.

It appears that in many circumstances, the thermal
nucleation of vortex rings may be responsible for dissipation in
the flow of bulk liquid helium through small apertures. It was
at first assumed that the saturated helium film was similar to
the narrow channels in which bulk flow was studied. However, the
film thickness is a factor of 103 smaller than the above channel
diameters, and it is not clear that the hydrodynamic analysis of
Langer and Reppy73 can be applied. Nevertheless, a number of
workers have analysed their results in terms of (2.5).

Liebenberg29 studied film fiow driven by a temperature
gradient, and his results agreed closely with the orifice
experiments. Keller and Hamme185 at Los Alamos obtained
agreement with (2.5) at T=1.6K, but did not study other
temperatures. Hoffer et a1 41 , also at Los Alamos, studied the
damping of the inertial oscillations between two reservoirs, and
found (in addition to the Robinson damping) dissipation which
could be explained in terms of (2.5). They found that both L/
and vp were very strong functions of temperature. Between 1K and
the lambda point, vpT/ Og4 (which is predicted to be a constant)
decreased by a factor of 30, while the supposedly nearly

temperature independent parameter &/ fell by 20 orders of
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magnitude! The Los Alamos group subsequently studied the "run
in"™ and inertial oscillations of the film (Campbell et al.uu).
They compared four different dissipation functions, and found
that (2.5) was a slightly better fit to their results than the
other three. Their results for the parameters ./ and Vg again
showed large unexplained temperature variations.

In an experiment on thermally driven film flow, Campbell and
Liebenberg30 found that at sufficiently large v, the dissipation
reached a plateau, as predicted by (2.5). However, a second
plateau was found at even higher dissipation and velocity. The
second plateau height corresponded more nearly to the value
predicted by (2.5) with L/ and vg derived from the oscillation
experiments, and they inferred that the thermal fluctuation model
was essentially correct.

Notwithstanding the general agreement with the ILF theory
found by the Los Alamos workers, there is a large body of
experimental evidence which does not support the theory. Martin
and Mendelssohn67 using a glass beaker, obtained a variety of
different dissipation/velocity relationships at temperatures
between 0.3K and the lambda point. Very few of these show the
characteristic sharp variation implied by (25). Crum, Edwards
and Sarwinski®® used a stainless steel beaker to study the effect
of 3He impurity on the film profile and critical velocity. They
stated that their results (for pure "He) did not agree with the
thermal fluctuation theory. Using the same beéker, Armitage et
a1.68’36 found that at low dissipation values, the ILF formula
was not obeyed. Blair and Matheson69 also found basic
inconsistencies between their results and the ILF theory. The
theory does not account for the jumps in transfer rate observed

by Allen and Armitage19 and by Harris-Lowe and Turkington35, nor
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does it explain the "quantised" transfer rates of Turkington and
Edwards3".

Taking all these experimental data into consideration
(particularly the large temperéture variation of the supposed
constants of the theory), it is at least rather questionable that
thermal nucleation of vortex rings is an important source of
dissipation in the helium film., We shall now see that there are
basic theoretical doubts about equation (2.5) as applied to the
helium film,

The most obvious impediment to applying the vortex ring
model of dissipation to the helium film is that it does not fit
the symmetry of the situation. As it expands, the top and bottom
of the ring will encounter the film surface and the substrate
before the sides reach the limits of the flow path. (This is
unlike the situation in superleaks and small channels, where the
flow path dimensions are of the same order in all directions
perpendicular to vs.) The vortex ring will tend to break up into
a vortex pair - two vortices of opposite circulation
perpendicular to the film.

In fact, Langer and Reppy73 suggested that a vortex pair
would be the critical fluctuation appropriate to the ILF theory
in the helium film. Based on this assumption, they inferred the

activation energy to be:
= 2
E, = [In(¥/2 Hvsa)-1] d Lg Ke/2T1

where d is the film thickness. Substituting this into (2.4), we
obtain that dvg/dt is proportional to vs)," , Where Ais given by
(2.11). This is exactly the relationship derived by
McCauley86’87 for the unsaturated film, based on the Kosterlitz-
Thouless picture of superfluid onset (see section 2.2). However,

in the same paper, Langer and Reppy73 present a dimensional
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argument to show that in the unsaturated film, E_ should be
velocity-independent, It is obvious that the appropriate form
for the activation energy is in considerable doubt.

The ILF prediction (2.4) assumes that dissipation is a
process limited by the rate at which vortices can be created;
every vortex is assumed to cross all streamlines in the flow and
be annihilated at the boundaries. In the case of vortex rings
in narrow channels or superleaks, this is not unreasonable.
However, for vortex pairs in the helium film, it is not at all
obvious that this is the case. In film flow experiments, there
is usually no boundary parallel to the flow direction against
which vortices can annihilate. Other effects such as the vortex
dynamics and vortex-vortex annihilation mdst be taken into
consideration, and the problem at once becomes more complex (see
references 87, 88, 89 and Chapter 7).

Further objections to the ILF theory have been- highlighted
by Harris-Lowe32, who points out that at high superfluid
velocities the theory should break down, and the predicted
saturation of dissipation is irrelevant. He also identifies a
possible error in the analysis of Campbell and Liebenberg's30
experiment which observed saturation.

We have thus seen that the application of equation (2.5) to
helium film flow experiments is questionable. Since it is
certainly the case that the dissipation increases sharply with
increasing vg, it is to be expected that a sharp function such as
(2.5) can be fitted to a given set of experimental data. The
observed rapid temperature dependence of the fitting parameters
just reflects the fact that (2.5) is the wrong shape to fit all
the data. The equation is a (rather poor) yardstick against

which film flow results are compared.
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In conclusion, it can be said that the application of the
theory to bulk flow of liquid helium in superleaks and narrow
channels seems to be justified. However, it is doubtful that the
thermal nucleation rate of vortices in the helium film is
primarily responsible for limiting the superfluid veloecity.
Thermal nucleation may indeed occur, but it appears that other

factors control the rate of dissipation.

2.2 The Kosterlitz~Thouless Theory

In 1972, Kosterlitz and Thouless?%:91 (referred to as KT)
published a theory of ordering and phase transitions in two-
dimensional systems. They pointed out that for dislocations in a
two-dimensional solid (or vortices in a two-dimensional
superfluid), the energy E and the entropy S both increase
logarithmically with the size of the system.' At low
temperatures, the free energy F = E - ST will be dominated by the
energy term E, but as the temperature rises, the entropy term ST
will eventually take over. The temperature Tc at which the free
energy changes sign was taken by them to be the critical
temperature of a phase transition. Below the transition, bound
pairs of dislocations (or vortices) exist as thermal excitations.
Above the transition, the pairs dissociate, destroying the
topological order (or superflow). The theory provides an
unambiguous prediction of the critical temperature; for the casze

of a two-dimensional superfluid it is:
To = TH2/0 /2miky (2.7)

where/o is the density of particles per unit area and m is the
effective mass of one particle.
Kosterlitzg2 investigated the critical properties of this

theory, with particular reference to the "X-Y model" of spins
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confined to a plane, but his results are also applicable to the
case of the two-dimensional superfluid. Nelson and Kbsterlitz93
reinforced the result that /Os/Tc was a universal constant, and
derived (numerically) an expression for the superfluid density
for T<T, (see equation 2.9).

The theory was extended by Ambegaokar, Halperin, Nelson and
Siggia94 (AHNS) and simultaneously by Huberman, Myerson and
Doniach9® (HMD) to the moving superfluid film. Both these
calculations showed that a large increase in dissipation was to
be expected near the transition temperature.

The situation considered by AHNS is a thin superfluid film
on an oscillating substrate. This was prompted by the
experimental work of Berthold, Bishop and Reppy96 (see below).
AHNS intpoduced a diffusion constant D, representing the vortex
diffusion perpendicular to (¥g-v,). They assumed that all
interactions between the vortices and thermal excitations and the
substrate may be incorporated into D. Pointing out an analogy
between the vortices in the film and a plasma confined between
capacitor plates, subject to an oscillating electric field, they
obtained expressions for the superfluid density and dissipation
as a function of frequency and temperature.

HMD independently obtained the same results as AHNS in the
low-frequency limit below T,. They emphasised that the physical
reason for the increased dissipation near Tc is that the energy
needed to separate a vortex pair is reduced due to screening by
the other (polarised) vortex pairs. Myerson97 in a separate
paper extended the work of HMD, and obtained explicit expressions
for the superfluid density and the dissipation in terms of the
temperature and the superfluid velocity. His results are

applicable up to higher velocities than those of AHNS,

AN

o s e st s




At this point, it is useful to summarise the predictions of
the theory. For the static film, the superfluid density jumps
discontinuously to zero as T, is exceeded. From equation (2.7),

the size of the jump is:
O5(Te7) = 8T kpTe/ K2 (2.8)

where K is the quantum of vortex circulation. The superfluid

density below Tc is also predicted by the static theory:
(D = QT (14b(1-1/T,) V2 (2.9)

where b is a (substrate dependent) constant.

For the dynamic film, the step in /DS is rounded; its shape
is predicted by AHNS and by Myerson, as is the shape of the
dissipation peak near T,.

The first indication that the theory might be the correct
description of the superfluid transition in the real unsaturated
helium film came from Rudnick98. He presented a variety of
third-sound measurements made near the transition temperature at
his laboratory, from which he calculated /(g. The results showed
that /ég/Tc was very nearly constant between To = 0.75K and
1.85K, at coverages between 2.1 and 5.6 atomic layers. The
average value of /OS/Tc was in close agreement with equation
(2.8).

Bishop and Reppy99 measured /cg for the unsaturated film
using an Andronikashvili torsional pendulum, with Mylar as the
adsorbing substrate. As the pendulum was cooled down below Tc,
the superfluid component decoupled from the substrate, and the
effective moment of inertia of the bob fell, causing the
frequency to increase. The change in period allowed the
superfluid mass to be determined. The Q of the oscillator was

used to measure the dissipation.
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The data obtained by Bishop and Reppy showed excellent
agreement with the dynamic theory of AHNS, both in the superfluid
density variation, and in the dissipation. The value of ,O,(T.")
was found to be very close to equation (2.8) for all film
thicknesses that were studied. Bishop and Reppy also pointed out
that some earlier experiments (such as that of Chester and
Yang12) had implied a jump in Og at the transition temperature.

Further confirmation of the theory came in 1980, when Roth,
Jelatis and Maynard10° published the results of an experiment on
Grafoil (a type of graphite foam). They measured the third-sound
velocity near onset, and determined the adsorbtion isotherm on
Grafoil. Their result for Og/T, was within 11% of the predicted
value (equation 2.8).

All experimental data do not, however, support the KT
theory. An earlier (1977) experiment by Berthold, Bishop and

Reppy96

used an Andronikashvili torsional pendulum to measure /s
on Vycor glass. This porus material has a very large specific
surface area, due to the large number of interior channels, which
form a highly connected three-dimensional network. The Vycor
glass used in the experiment had a mean pore diameter of
approximately 8nm. Berthold, Bishop and Reppy ‘found no

diécontinuity in the superfluid density near the transition;

their results showed a dependence of /Og On T of the form:
05 = A(1=1/1,)0+635 (2.10)

with A dependent on the film thickness. This is similar to the
behaviour of bulk helium, and is ‘incompatible with the KT theory.
The explanation put forward‘was that the highly three-
dimensionally connected system of pores destroyed the two-

dimensional nature of the film, making the KT theory
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inapplicable. However, the Grafoil substrate used by Roth,

Jelatis and Maynard10°

was also highly connected, and it seems
strange that third-sound measurements should indicate the
applicability of the KT theory to such a system, while the
torsional pendulum experiment should not.

A further (theoretical) doubt has been cast on the
applicability of the KT theory to the real helium film. Dash 101
has pointed out that "phase condensation" should occur in the
film. He argued that below a certain temperature, the normal-to-
superfluid transition will be a percolation transition from
patches of unconnected superfluid to a continuous connected
superfluid sheet as the density is increased. This transition
should happen at a constant density, independent of temperature.
No KT type transition should be observed between the percolation
transition onset temperature and T=0.

Dash interpreted the absence of this critical temperature
gap as showing that either the heterogeneous nature of real
substrates has a major effect on the interpretation of the
theory, or that two-dimensional superfluidity can be a two-phase
phenomenon, involving both the superfluid patches and the
surrounding two-dimensional vapour. The controversy between Dash
and his supporters and believers in the KT theory continues.

Despite this unresolved problem, research on the KT model
has continued. Berker and Nelson102 have extended the theory to
3He - L*He mixtures, and have calculated the contribution of the
vortices to the specific heat. McCauley86’87 derived expressions
for the vortex dissociation and recombination rates at
temperatures far below T,» He assumed that the vortex
distribution is principally due to Brownian motion of the
vortices in the gas of thermal excitations. He demonstrated the

importance of the "vortex-vortex coupling constant!':
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X = LOgK2/2TkgT (2.11)
A < 4 above T

=4 at T,

A> U4 below Tc

This is analogous to the Reynolds number for the two-dimensional
film.

Another experiment which has been interpreted in terms of
the KT theory is that of Eckholm and Hallock'03. They created a
persistent current over a toroidal path in the unsaturated film,
and moniAtored the velocity by measuring the Doppler shift of
third sound. Their results showed that for films thicker than
approximately d = 8 atomic layers, the velocity decayed following
a logarithmic law (equation 2.7). For thinner films, (d < 8
layers), the decay was slower at late times; the velocity was

found to be given by:
v(t) = A(14Bt)™ (2.12)

where n varied between approximatly 0.3 and 1. The problem arose
because although the KT theory could be used to derive the
empirical formula (2.12), the value of A was required to change
rapidly with thickness, and indeed for the thinnest films, A<A4,
violating the KT condition for superfluidity.

Various attempts were made to explain this discrepancy; all
of them relied on "vortex density relaxation" (allowing the
vortex density to vary explicitly with time during the flow).

McCauley 0%

suggested that the thicker (d>8) films started with
less vorticity than the thinner films, but was unable to obtain
satisfactory fits to the data. Yu88 incorporated vortex creation

and annihilation at the film edges as well as in the bulk, and
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- studied the effects of vortex pinning. He obtained reasonable
fits to the persistent current data with three adjustable
parameters, and obtained values of A which were in reasonable
agreement with the third sound experiments of Rudnick. However,
to explain the thin film (d<8) data, he relied on film-edge
effects. It is very difficult to see where these edges could
arise in the geometry of the experiment. Browne and Doniach89
also considered vortex density relaxation and vortex pinning
effects, and obtained good fits to the data, but at the expense
of using five adjustable parameters.

The ideas presented in Chapter 7 are similar to some of
those used by Yu and by Browne and Doniach. The importance of
vortex-density relaxation has now been recognised in the
unsaturated film; the work presented in Chapters 6 and 7

demonstrates its importance in the saturated film.
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CHAPTER 3
THE EXPERIMENTAL APPARATUS
3.1 General Design

We have seen that the situation regarding dissipation in the
saturated film is far from clear. Further experimental and
theoretical effort is required to clarify the position, and
therefore the work presented here was undertaken.

There are a number of factors to be taken into consideration
in the design of a film flow experiment. In many cases, it is
largely a question of eliminating unwanted effects, and we now
describe how such requirements affect the experimental geometry.

The asymmetry of beaker film flow experiments results in a
difference between inflows and outflows, as we have noted. To
eliminate this effect, a "twin-reservoir" design was adopted,
comprising two similar reservoirs connected by the film.

The experiments of the Los Alamos group70’71 have shown that
changes in the region where dissipation occurs affect the
transfer rate. To avoid this variation, it is necessary to
confine the dissipation to a known part of the flow path. A
possible way of doing this is to ensure that the region of
maximum velocity is well localised, which is achieved in our
experimental apparatus by constraining the film to flow through a
small hole in a plastic film, The maximum velocity occurs in the
hole, and there are large velocity gradients on either side of
it. It is of course necessary that the substrate should be clean
and smooth in the dissipation region.

The experimental cell was designed as a small, self-
contained chamber, to be filled with helium gas at room
temperature and then sealed off. Provided the design allows
sufficient 'dead volume' so that the pressure of gas need not be

too high, such a scheme has several advantages compared with
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other commonly used methods.

Many previous studies have used the technique of filling the
cell at low temperature down a stainless steel capillary from a
room temperature gas supply. However, such an approach would
involve additional plumbing, and be a source of leaks., In
addition, a capillary leading into the cell adds complicating
effects such as film refluxing up and down the capillary, and the
possibility of bulk liquid helium moving between the experimental
region and the capillary due to fountain pressure.

An alternative scheme utilised in early experiments was
filling the experimental cell from the main bath through a needle
valve. In the present case, the intention was to use uHe with as
little 3He impurity as possible, to eliminate any transfer rate
variation from this source25. The liquid helium in the main bath
was insufficiently pure to use for the experimental cell. This
scheme was therefore also rejected in favour of the sealed cell
system.

The technique chosen for monitoring the liquid level in the
reservoirs was by measuring the change in capacitance of a
parallel plate capacitor as the amount of helium between the
plates varied. This method is now used almost universally, the
only alternative being visual observation using a cathetometer,
which among other disadvantages is very slow. To reduce the dead
space necessary for the gas at room temperature, the minimum
amount of liquid helium possible was to be used. The most
efficient utilisation of the liquid helium is when it is all
between the capacitor plates, contributing to the level
measurement. The capacitors were therefore designed such that
the space between the plates formed the reservoirs.

To maximise the sensitivity of the capacitors to change in
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(vertical) liquid level, the capacitor-reservoirs were inclined
at a small angle to the horizontal. A given change in vertical
liquid level would then correspond to a greater change of liquid
volume between the plates than if the capacitor were vertical.

The film was driven by applying a DC voltage to one of the
capacitor reservoirs. The resulting decrease in the chemical
potential of the liquid in that reservoir resulted in a chemical
potential gradient over the length of the film, initiating flow
between the reservoirs through the film. The DC voltage source
was programmable, to allow extremely flexible drive/time profiles
to be used.

This electrostatic drive method was chosen in preference to
the main alternative, which involved liquid displacement using a
moving bellows., One disadvantage of the latter technique is the
necessity of transmitting a smoothly changing mechanical
displacement down to the low temperature parts of the apparatus.
The mechanical method is also less flexible, since the chemical
potential cannot be changed as quickly or as easily as in the
electrostatic case.

The chemical potential of liquid helium in an electric field

is given by
/(,L :",X£0E2/2/° (3.1)

The chemical potential change due to the electric field thus
varies as the square of the applied voltage. The programmable
voltage source used to drive the film was therefore preceeded by
a square-root stage. The input to this stage was thus directly
proportional to the electrostatic chemical potential difference.
In order to control the input (V,) to the square-root stage,
a 'Film Drive Unit' (FDU) was constructed. It consisted of

several signal sources, each of which could be individually
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disabled, feeding into a summing amplifier, the output of which
was connected to the square root stage. Provision was made for a
signal proportional to the liquid level in the measurement
capacitor to be (optionally differentiated and) added to the
other signals. A feedback loop was thus established, comprising
the drive capacitor, the helium film, the measurement capacitor
and its associated electronics, the FDU and the programmable
voltage source. By inverting and differentiating the liquid
level signal, inertial oscillations in the helium film could be
built up and maintained essentially indefinitely.

3.2 The Cryostat

The experimental cell was originally designed to be used in
a very low temperature adiabatic demagnetisation cryostat.
However, circumstances dictated that a silvered glass cryostat be
used, which was capable of reaching only 1.10°K, All experiments
were carried out at or near this temperature.

Figure 3.1 shows the low temperature parts of the apparatus.
An outer dewar contained liqﬁid nitrogen (A), both to precool
the the inner helium dewar before liquid helium was transferred
into it, and as a thermal shield. During the course of the
experiment, the level of nitrogen in the outer dewar was kept
below the bottom of the inner dewar in order to eliminate
vibration of the latter due to boiling of the liquid nitrogen.
To maintain the effectiveness of the nitrogen as a thermal
shield, a cylindrical copper radiation shield (B) was situated
between the two dewars, with its lower end in the nitrogen. The
maximum time for which data could be taken was limited by the
time for which the bottom of the radiation shield remained in the
liquid nitrogen. As soon as the shield emerged it started to warm

up, causing a temperature change in the helium bath.
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The liquid helium filled inner dewar was pumped on through a
2" diameter flexible pipe connected to a rigid 4" diameter
pumping line and thence to a large rotary pump, two rooms away
from the experiment, No vibration was detectable at the
experimental apparatus due to this (or any other) source.

Two circular radiation shields (C) were situated in the
helium space above the experimental cell in order to reduce the
thermal radiation falling on the cell from the top of the
cryostat. Another cylindrical copper radiation shield (D) was
situated in the liquid helium surrounding the cell.

The experimental cell (H) was supported in a brass frame (E)
connected to a stainless steel tube (F) suspended from the
cryostat top plate. Small german silver tongues (G) were mounted
on the frame to effect mechanical contact with the cryostat
walls. FElectrical connections were made through glass-to-metal
seals at the cryostat top.

A mercury manometer was connected to the cryostat top, and
the pressure was read off with a cathetometer. By reference to a
table of the liquid helium vapour pressure, the temperature was
determined.

A 220ncarbon resistance thermometer (I) was mounted on the
experimental cell, and its resistance was measured with an Oxford
Instruments resistance thermometer bridge. The off-balance
signal from the bridge was rectified and connected to a heater in
the liquid helium, thus forming a feedback loop to control the
temperature in the cryostat. The rectifier was included so that
a rise in temperature beyond the bridge null point could not
supply power to the heater. The off-balance signal was recorded
on a chart recorder. Using this control system, the temperature

remained constant to within 3mK so long as the 77K radiation
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shield remained in the liquid niftrogen.

3.3 The Experimental Cell

The experimental cell (figure 3.2) was made mainly from
Stycast 1266, a cold-setting two part transparent epoxy resin,
much used for tﬁe construction of low-temperature apparatus.
Among the advantages of this material is the ease with which
complex-shaped parts may be moulded or machined and the variety
of constructional techniques which may be used.

The two reservoirs of liquid helium between which flow took
place were formed by two capacitors, separated vertically by 4mm.
To maximise the sensitivity of the capacitors, they were inclined
at an angle of approximately 12° to the horizontal. The upper
capacitor (the drive capacitor C1) was connected to a
programmable high voltage supply, and the lower capacitor (the
measuring capacitor 02) was connected in one arm of a ratio arm
transformer bridge.

With no voltage applied to C1, the lower capacitor Co
contained its maximum volume of liquid helium. As the voltage to
C1 was inereased, helium flowed from C, through the film joining
the two capacitors to C1.

The path taken by the film was: from capacitor Co, up through
a slot (A) onto the walls of a cylindrical chamber (B); thence
through a tube (C) into a second cylindrical chamber (D), where a
constriction (E) in the form of a Melinex disk with a central
hole was encountered. The film then entered Cq through another
slot (F).

The flow-constricting hole was formed using a red-hot needle
point to melt the film. The plastic drew back from the needle
point, leaving a nearly perféct circular hole edged by a bead of

smooth plastic. Care was taken to keep the film as clean as
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possible to reduce the possibility of enhanced transfer rates due
to contamination.

There was a dead volume (G) above the rest of the cell,
connected by a small hole to (A). This was to provide space for
the helium to expand into as the cell was warmed. On the
exterior of this dead space were glued eight copper strips, to
act as terminals for the connections to the cell capacitors and
the resistance thermometer.

The cell was filled through a German silver capillary (H)
embedded in the wall of the dead space, After filling with pure
helium gas (containing less than one part in 109 of 3He) to the
required pressure, the tube was pinched off and the end soft

soldered.

3.4 The Capacitors

The measurement and drive capacitors Cq and C, were
constructed identically and differed only in their electrical
connections. Figure 3.3 shows the method of construction.

The capacitor plates were made of perspex. It was found that
perspex sheet 'as rolled! was sufficiently flat (typically to a
few wavelengths of light) for this purpose. The lower plate, (A)
in the figure, was cut from 5mm perspex sheet, while the upper
plate (B) was of 1mm perspex. Plate (B) (1l.1lem x 1.Tcm) was
chamfered on its upper edge in order to allow electrical contact
to be made to its surface. Both plates were thoroughly cleaned
and degreased in an ultrasonic bath before being gold plated on
one side in a vacuum deposition chamber to a thickness of
approximately 300nm. The lower plate (2.3em x 2.0cm) was masked
round the edge in order to prevent gold from reaching the areas
which had to be glued.

The distance between the capacitor plates was defined and




maintained by three 1.5mm squares of 100ﬂm thick Melinex sheet.
Two squares were located at the top end of the capacitor plates,
one on either side, and the third was positioned at the bottom
end in the centre, as shown in the figure. Due to the 'rag' on
the edges of the squares, their effective thickness was measured
to be 120um. (Details of this measurement are to be found in
section 4.1).

A top member (C) was glued onto the lower plate around the
edges, using quick setting cyano-acrylate adhesive. The join was
made leak free with an exterior coating of Stycast 1266. The
upper plate with the Melinex spacers resting on it was inserted
into the upside-down assembly, which was then inverted. To retain
the upper plate in position, a small leaf spring (D) was inserted
between it and the top of the capacitor 'box'.

Electrical connection was made to the gold-coated surfaces
through two 42 SWG copper wires which were affixed to the plates
at their upper ends uéing Dag silver paint.

The small gap between the capacitor plates ensured that any
bulk liquid helium in the cell was held by surface tension within
the capacitors. A volume of 0.018ecm3 was calculated as being
sufficient for the experiment, However, it was found that
0.05cm3 had to be introduced into the cell in order to provide a
satisfactory liquid level in the capacitors. This may be
explained by the existence of cracks within the cell, of smaller
width than the capacitor plate separation. These cracks would be
the first to £ill with liquid helium due to surface tension.

The total internal volume of the cell (approximately 35cm3)
was such that one atmosphere of helium gas at room temperature

provided approximately(L050m3 of liquid helium.
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3.5 The Measurement and Feedback System

A block diagram of the measurement and feedback electronics
is shown in figure 3.4. The lower capacitor C, was incorporated
in the measurement arm of a ratio-arm transformer bridge (type
GR16154A). Its capacitance was measured using the three terminal
technique, which eliminated the effect of lead capacitance. The
transformer could be used to measure the capacitance to 6 digit
accuracy, or alternatively could be set at a particular
capacitance value. In the latter mode, the signal seen by the
null detector of the bridge was proportional to the difference
between the value dialled on the bridge and the actual value of
Coe This proportionality was measured to be accurate to 0.01%
over the range used. However, the proportionality constént (ie
the out-of balance sensitivity) was found to be slightly
dependent on the bridge setting.

The null-detector used was a Brookdeal 9503 lock-in
amplifier, containing an integral oscillator which provided
excitation for the bridge and a reference signal for the phase-
sensitive detector. Excitation at 5kHz at 5Vp-p was used. The
output of the lock-in amplifier was a =10V to +10V DC level
representing either the in-phase or the quadrature component of
the output of the bridge. Which phase it represented was switch
selectable. The quadrature component could be balanced out by
introducing compensating resistive loss into the reference arm of
the bridge. The in-phase off-balance signal was then
proportional to the value of C5 and thus proportional to the
level of liquid helium between its plates.

The lock~in amplifier output was smoothed by an internal
integrator. For optimum noise reduction, a time constant of 1s

was chosen for this stage. The output was recorded on a two pen
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chart recorder, together with the output from the film drive
unit. The off-=-balance signal was also connected to the film
drive unit as part of the feedback path.

The programmable DC power supply used to drive the upper
cell capacitor C1 was a Kepco model OPS500B, capable of a maximum
output voltage of 500V. It consisted of a low voltage
preamplifier followed by a power amplifier. Figure 3.5 shows the
connection of these two stages.

The preamplifier was configured as a unity gain inverter.
The power amplifier was also cénnected as an inverter, with an
adjustable gain controlled by RV1. The gain could be varied from
25 up to 50, and was typically kept constant at 40, A 1Mo
resistor Rg was inserted in series with the output in order to
increase the output impedance, since only very little current was
required by the capacitive load even when the output (V1) was
changing at its maximum rate. Rg prevented damage to delicate
wiring in the cryostat in the event of an accidental short

circuit,

3.6 The Film Drive Unit

The six sighal sources feeding the summing amplifier in the
film drive unit were: a ramp generator, a short pulse generator,
a long pulse generator, a differentiator, an amplifier/
attenuator and a general purpose external signal. The function
and the working of each of these sources will be described
individually. Component numbers refer to figure 3.6.

The purpose of the ramp generator was twofold: to provide a
means of al@ering the equilibrium levels in the capacitors, and
to initiate and maintain flow at a predetermined transfer rate.
The ramp generator had three modes, controlled by front-panel

pushbuttons: a) 'run', when the output increased or decreased at
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FIGURE 3.6

The Film Drive Unit, ICs 1 to 5, 9, 11 and
12 have offset adjusiment pots connected,
and ICs 2, 4 nd ¢ have freguency
cempensating cagacitors. These have been
omitted for clarity, and they account £or
the missing component numbers.




a constant rate; b) 'hold', when the output was maintained at a
constant value; and ¢) 'reset', when the output was forced to
Zero.

The ramp generator consisted of an integrator (IC1,R2,C1) of
time constant 100s, supplied (in 'run' mode) from the slider of a
10-turn potentiometer RV4,. The sign of the input voltage, and
therefore the direction of change of the integrator output, was
selected by S1. By adjusting RV,, any required voltage ramp rate
could be generated. The linearity of the integrator output was
better than 0.1%. The ramp rate scaled linearly with the setting
of RVq to 0.25%. An imbalance in the positive and negative
supply lines caused the 'up' rate and the 'down' rate to differ
by 0.4% for a given setting of RV1.

In thold' mode, the integrator input was grounded, and the
charge on 02 maintained the output voltage at its previous value.
In order that the output voltage should not 'droop' excessively
in this mode, careful selection of components Cq and IC1 was
essential. To minimise the leakage conductance of Cqr a
polyester dielectric type was chosen, with a dielectric
resistance greater than 3 x 101QQ_. This corresponded to a
calculated time constant of more than 3.5 days. The measured
'droop! rate of the integrator output was 5/uV8'1 at an output
voltage of 3.1V. The actual time constant was therefore 7.1 days.

In 'reset' mode, C1 was discharged through R5 and the output
brought to zero.

We now turn to the long pulse generator. The presence of
inertial oscillations in the helium film is often an unwanted
side effect; for instance when studying steady flow. An
electronic means of eliminating the oscillations was therefore
attractive. The long pulse generator provided such a facility.

An output pulse of adjustable height and duration could be
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initiated using switch Sg. Section 4.3 describes the effect of
the pulse on the oscillations.

The timing of the pulse was controlled by ICg. Depressing
the start button Sg caused pin 3 on ICg to go high, illuminating
LED4 and operating relay RL,., thus causing the output of the
voltage~follower IC11 to be fed to the summing amplifier. The
duration of the pulse was controlled by RV44 and could be varied
from 3 to 30 seconds. The pulse height was adjustable up to
150mV using RVqq. The direction of the pulse was controlled by
Sy |

The transition from a stationary equilibrium situation to a
state of constant sub-critical transfer rate initiates inertial
oscillations, because the film cannot accelerate to the required
flow rate instantaneously. In order to eliminate oscillations
generated in this manner, a short voltage pulse could be applied
to the drive capacitor whenever fhe ramp generator entered 'run'
mode. A pulse of (suitably short) constant duration and of height
proporticnal to the transfer rate provided sufficient impulse to
accelerate the film to the required flow rate. Section 4.3
describes the effect of the short pulse on the oscillations.,

The pulse timihg was controlled by IC7, RV5, Roq and Cg. A
pulse width of 2 seconds was used. With the short pulse facility
enabled (using SS)' whenever the 'run' mode of the ramp generator
was selected relay RL, was energised, presenting the voltage on
the slider of RVy (which was proportional to the transfer rate)
to the inverting amplifier IC,. For a fixed setting of RV1, the
height of the pulse was controlled by RV15 in the feedback loop
of ICo.

The 10V power supply for both the short and long pulse

control logic (IC7,8, RL1’2) was kept separate from the analog
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power supply (-15V and +15V) in order that any switching
transients should not affect the latter.

I am obliged to J G M Armitage for suggesting both pulse
techniques for eliminating the oscillations.

We now consider the remaining inputs to the summing
amplifier. The output from the lock-in amplifier was connected
to the FDU to complete the feedback loop. After a voltage
follower stage (ICS) to reduce the impedance, the lock-in signal
was fed to an inverting amplifier (IC3) with a gain variable
between 0.5 -and 100, controlled by RV17. The lock=-in signal was
also fed to a differentiator (ICQ,C3,RV8) with a time constant
adjustable up to 500ms using RVg. Rq3 and Cy limited the high
frequency response of the differentiator to approximately 20Hz.

The polarity of the lock-in amplifier output could be
reversed by means of a front panel puéhbutton on the amplifier.
It was thus possible to select positive or negative feedback. It
will be shown in Chapter 4 how feedback through the
amplifier/attenuator affected the period of the inertial
oscillations, while feedback through the differentiator
introduced either additional damping of the oscillations (if
negative feedback), or exponential growth of the oscillations (if

positive feedback).

An extra input to the summing amplifier was provided,

but not used during the experiments.

The output V, of the summing amplifier ICg was available
externally for monitoring on a chart recorder. Two front-panel
indicators (LED4 and LED,) were used to show when V, was at the
top or bottom of its permitted range of 0 to 10V. The zener
diode D3 prevented V4 from rising above 10V.

The square-root function was implemented with an Analog

Devices 435J transconductance multiplier module., The multiplier
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inputs (X and Y) were both connected to the output of the
internal amplifier A, which was configured as an inverter with
the multiplier in the feedback loop. Analysis of this
configuration gives the output voltage Vroot in terms of the

input VO:

Veoot = = J10 (Vg =€) (3.2)

where € represents errors associated with the multiplier.

Diodes Dy and D5 prevented the output from going positive, which
would 'latch up' the circuit,

The measured performance of the square~-root stage was:

Voot = = 0.997 J10 ( Vg - 0.008) + 0.014  (3.3)
The 14mV offset of V., .+ had the effect of a constant level
difference between the capacitors and therefore did not affect
the performance of the FDU., Neglecting this offset, the square -

root stage was accurate to better than 0.4% over 90% of its

range.
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CHAPTER 4
EXPERIMENTAL PROCEDURE

4,1 Calibrating the Capacitors -

The quantities actually measured in the experiment were the
value of the measurement capacitor C, and the voltage V1 applied
to the drive capacitor C4. In order to relate these to the
physically interesting quantities of level difference and flow
rate, knowledge of the capacitor geometry was important. The
width and length of the capacitors were determined by measurement
prior to assembly. The exact capacitor plate separations were
however not known.

In order to obtain an estimate of d2, the separation of the
ﬁeasurement capacitor plates, a preliminary experiment was
carried out. Prior to mounting C, on the cell, it was placed on
its own in a cryostat and cooled to 1.1K. Measurements were made
of its value both in the liquid helium bath and out of it., The
difference between these two values (AC = 0.62 + 0.005 pF)
together with the known areas of the capacitor plates and the
Melinex spacers, was used to determine the mean value of dy.
(dy = 123 % 3 pm.)

Once the cell had been assembled and filled, the
relationship between level difference and the value of Co could
be determined by measuring the latter as a function of the
voltage applied to C1. The expected form of this relationship
may be derived as follows.

Ignoring surface tension, fhe chemical potential of the

liquid helium in the upper and lower capacitors is given by

M= g Chg +xq8in By ) = (X&/2p) (V1/dq)2  (4.1)
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where the symbols have the following meanings:

acceleration due to gravity

g
ho

Xq.0= displacements of the liquid levels from the

vertical separation of the two capacitors

Yo Gy .. §
S BB e e ) bRt

bottoms of the capacitors, measured parallel to
the capacitor plates

6%’2 = the angles made by the capacitors to the

horizontal
d1’2 = mean separation of the capacitor plates in the
region occupied by the liquid helium
W12 = mean widths of the capacitor plates in the region
occupied by the liquid helium
V1,2 = voltage applied to the capacitors
(1+X) = dielectric constant of liquid helium

The total volume of liquid in the capacitors is:

’

vV = W1X1d1 + w2x2d2 (4.3)

At equilibrium, M4 = MU, . Combining equations (4.1), (4.2) and

(4.3), and differentiating with respect to x,, we obtain:

(XE/208) dV12/dxy = - dq2dowp/A (4.4)

where we have defined the "reduced area™ A as:

A = ( sin 91/W1d1+ sin ge/Wzdz )-1 (4-5)

Expressing C, in terms of Wo, do and X5, and substituting in

equation (4.4), we obtain:

dc, (X¥€,)2 A
messn iH - (4.6)
av,2 208 dq%d2

If dq and d, are independent of x and our other assumptions hold,

4,2
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then a graph of C2 against V12 should be a straight line, with a
slope given by (4.6).

In order to verify this prediction, the filled cell was
cooled to 1.1K and the temperature stabilised as described in
section 3.2. V1 was increased from zero using the film drive
unit (FDU). To take a reading at a particular value of V1, the
FDU was put into "hold" mode, and once the inertial oscillations
of the film had died away, the value of C, was measured.

Previous experience had shown that dielectric breakdown in
the drive capacitor could occur at approximately 300V. This
corresponded to a mean electric field of 3 x 100 Vm'T, which is
the approximate dielectric strength of helium gas. The field
near the edges of the upper capacitor plate would exceed this
value, For this reason, the voltage applied to Cq was kept below
250V.

Figure 4,1 shows the results obtained. A number of points
arise from this graph.

The range of C2 (from completely empty to completely full)
was 12.615 to 13.235 pF. The usable range over which the liquid
level could be varied appears from figure 4.1 as 12.753 pF to
12.794 pF, ie only 0.041 pF, 8% of the total available range.
(The repeatability of these "constants of the apparatus" was
+0.01pF from run to run. The accuracy to which a particular
value of C, could be measured was +0.0005pF.) Secondly, the
graph appears to be slightly curved, rather than straight as
predicted by equation (4.6). Possible factors contributing to
these observations will now be described.

The actual capacitor plate separations were found to be
approximately 20% larger than the designed value of 100fxm. Due
to the strong dependence of dCZ/dV12 on the plate spacing, this

derivative was reduced by a factor of 2 from its designed value.
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The maximum achievable value of V1 was also reduced by a factor
of 2 due to dielectric breakdown. Both these factors reduced the
accessible range of the capacitors.

The effect of the Melinex spacers in the capacitors was to
lower the value of the reduced area A by approximately 6% when
the spacers intersected the liquid surface. The known size and
approximate position of the spacers in the capacitors enabled the
values of C2 at which they would have this effect to be
calculated. Below 12,675 pF and above approximately 12.83 pF,
the spacers would be expected to alter the value of A, The cell
was filled with enough liquid to ensure that the usable liquid
level range was well away from these limits, and the spacers
could be ignored.

The mean value of dC2/dV12 over the range 12.752 to 12.790
pF, where most of the experiments took place, was estimated from
figure 4.1 to be (7.85 + 0.25) x 101 pFV~2. Substituting this
value, together with the mean value of d, derived earlier (page
4.,1) into equations (4.5) and (4.6) yields the following values
for dy and A within the above range:

dy = M3 +7 um
A = (3.05 + 0.15) x 1072 cn
It should be emphasised that the values of d1, d2 and A
calculated above are average values, and may vary over the length
of the capacitors. 'Rags' of unequal size on the Melinex spacers
would cause d (and thus the slope of figure 4.1) to vary from one
place to another, as would any distortion of the upper capacitor
plate caused by the retaining leaf-spring. From figure 4.1, the
value of dV12/d02 varied by approximately 6%. This indicates the
extent of variation in the capacitor parameters over the

accessible range. For the inertial oscillations, which took
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place over a comparatively small range of the capacitors, this
variation was unimportant. The steady flows were carried out
over part of the range where the variation was only 3%. No
change in measured transfer rate which could be ascribed to
capacitor parameter variation was observed.

We can now work out the relationship between C, and H, the
vertical difference between the liquid levels in the two
capacitors. Using the geometry of the capacitors together with

equation (4.3), we obtain:
dCo/dH = XE A/dSP (4.7

Substituting the calculated values of A and d,, we obtain
dCo/dH = 1.07 + 0.07 pF cm™',
The rate of change of C, with time can be related to the

film transfer rate O which is given by
O = wpXpdp/Ppin (4.8)

where ppin = 0,188 + 0.002 cm is the perimeter of the flow path
at the constriction. Using equation (4.8), we obtain for the

rate of change of Co:
Cy = (X&ppin/dp?) T (4.9)
The proportionality constant is 6.6 + 0.5 pF em™2,

4,2 Steady Flow

Because of the small range over which the liquid level could
be varied, only relatively short steady flows could be studied.
Flows generally lasted no longer than 40s before the end of the
available range was reached. In practice, to keep within the
range and to minimise the effect of variations in the capacitor

sensitivity, the runs were limited to approximately 30s,
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FIGURE 4.2 Tracing of Vi, ramp (top) and C,
(bottom), showing critical flow followed
by inertial oscillations.




depending on the flow rate.

V4 was held constant until the inertial oscillations of the
film had died away and the liquid level was stationary. The FDU
was then put into frun' mode, thus ramping V12 at a predetermined
rate. The ramp was stopped at a point corresponding to an
equilibrium liquid level within the measurement range of the
ratio-arm transformer bridge, so that it was not necessary to
change the bridge setting during the flow. The liquid level was
recorded on a chart recorder along with the linear output Vg of
the FDU. A tracing of a typical flow and VO ramp is shown in
figure 4.2.

Because of the uncertainties in the linearity of the
capacitors and the limited time over which the steady flows took
place, detailed investigation was not attempted; preference was
given to the sthdy of the inertial oscillations. The results

which were obtained are discussed in section 5.1.

4,3 Operation of the Pulse Generators

The long pulse was an attempt to cancel out the inertial
oscillations of the film by altering the effective zero level
about which they took place, for a time equal to half the
oscillation period.

For purposes of illustration, we consider oscillations about
a fixed level difference. Figure 4.3(a) shows the effect of the
pulse. The pulse length was adjusted to exactly half an

oscillation period. The pulse was started manually with a

pushbutton when the liquid level was at its maximum, whereupon

the level started to oscillate about its new effective zero
position. If the pulse height (in terms of liquid level
equivalent) was exactly half that of the oscillations, after one

half period, the oscillating level reached its previous mean
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level with zero velocity, At this time the pulse automatically
switched off, leaving the film stationary at the original mean
level.

The oscillation period was measured, and the pulse duration
adjusted to exactly half the period. Oscillations were initiated
using the short pulse generator for convenience. Due to Robinson
thermal damping, they decayed as shown in figure 4.3(b) over
approximately 8 cycles. In 4.3(¢), the long pulse was started
Jjust as the level difference reached its maximum value. After
the pulse was over, the oscillations were considerably reduced in
amplitude.

Adjusting the pulse length to the correct value presented no
problems. However, the pulse height was more difficult to adjust
correctly. Because of the rapid decay of the oscillations, the
best method was found to be to set the pulse height, and wait for
an oscillation of suitable amplitude on which to start the pulse.
At lower temperatures, where the Robinson damping is ineffective
and the decay of the oscillations therefore much slower, it would
be easier to set the pulse height. In such a case, the long
pulse facility would be essential in order to avoid a long wait
while the oscillations died away.

It was found to be very difficult to tell exactly when the
peak amplitude of the cycle was attained. Experience showed,
however, that starting the puise at any time within a 'window!
approximately 3 seconds wide around the extremum was effective.

The reduction of oscillation amplitude was usually between
70% and 90%. In addition to the difficulty in setting the pulse
height, the decay of the oscillations was another factor causing
there to be a finite residual amplitude.

The short pulse was designed to enable a sub-critical steady

flow to be started without the accompanying inertial oscillations
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FIGURE 4.4 Sub=ecritical flow (a) without and (b) with
a short voltage pulse at the beginning of
the ramp. Note that the voltage scales are
different in the two cases.




superimposed. By accelerating the film to the required velocity
in the first two seconds of flow, the oscillations could be
suppressed. Section 3.6 describes the operation of the short
pulse generator electronics. Figure 4.4 shows sub=-critical flow
with and without the pulse.

Careful adjustment of the pulse height (at a fixed ramp
rate) was necessary in order to eliminate the inertial
oscillations. It was found that the short pulse was less
effective at other sub-critical transfer rates, even though the
pulse height was automatically adjusted in proportion to the

drive rate.

4.4 Feedback
In order to discuss the effect of feedback through the
differentiator and the attenuator in the FDU, we must first
derive the equation of motion of the film for sub~critical flow.
The superfluid driving force is the chemical potential

gradient, ie:
Dyg/Dt = - ¥ AL (4,10)
where D/Dt is the "eco-moving derivative":
D)Dt = d/dt + V4.V (4.11)

The second term in equation (4.11) (together with a term in the
chemical potential proportional to vsz) gives rise to the
Kontorovich film thinning effect when (4.10) is applied to a
liquid helium film, Film thinning is most important at high
velocities and will therefore be ignored at this stage in the
analysis.

The superfluid velocity v, may be related to the film

S
transfer rate o, which is defined as the rate of change of

4.8




volume in one reservoir divided by the minimum perimeter of the

path (ppi,). Conservation of mass requires that at any point in

the film,

PO Ppin = PgVsdp (4.12)

should be a constant. Here d is the film ’c.hi'ckness and p the
perimeter of the flow path at any point. Integrating equation
(4,10) over the length of the film and using equations (4.1),
(4.2), (4.8) and (4.12), we obtain:

X €, sin 8, V42

A g
s B 2,0 wydy dy2

where the integral

¢ [ 4

- Ty 4014
pd 5 )

is along the flow path. It is a geometry dependent quantity,
calculable for any known geometry and film thickness. The
variable h = hy = x5, sin 92 is the vertical height of the liquid
level in the measurement capacitor (to within an additive
constant).

Since V42 is proportional to Vg (the linear output of the

film drive unit), we may lump all the prefactors together and

obtain: -
h o+ OPh = v, (4.15)
where
We? = /’g-‘ - (4.16)
IA

If Vo is a constant, this is just the equation of free simple

harmonic motion (SHM) at angular frequency (3y. The effect of
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feedback can now be clearly seen. For feedback through the
attenuator, V5 is proportional to h, thus altering the period of
the oscillations by an amount depending on the attenuator gain.

In the case of feedback through the differentiator, Vj is
proportional to ﬁ, thus introducing damping into equation
(4.15). A positive damping coefficient (negative feedback)
corresponds to exponentially decreasing oscillations, while a
negative damping coefficient (positive feedback) corresponds to
exponentially increasing oscillations. The sense of the feedback
is changed by inverting the output signal from the Brookdeal
lock-in amplifier. In practice, since Robinson damping, also
proportional to h, is present, increased positive feedback is
required to produce oscillation growth.

With the liquid levels at equilibrium, the differentiator
gain was set to the required value, and it was then enabled.
Small perturbations due to electronic noise soon initiated small
oscillations which increased in amplitude exponentially, until
non-linear dissipation limited growth. After a suitable number
of oscillations had been recorded, the feedback was either

removed, or reversed in sign, and the oscillations decayed.
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CHAPTER 5
THE EXPERIMENTAL RESULTS

5.1 Steady Flow

Sixteen driven steady flows, produced as described in
section 4.2, were studied. The ecryostat temperature for all
flows was 1.14K. The results from these runs are tabulated in
table 5.1, O is the film transfer rate. Vg5 refers to the
linear output voltage from the FDU, while AV, is the total change
in V5 over the duration of the run. Ah is the total change in
vertical liquid level in the measurement capacitor during the
run. The quantity & is defined later in this section.

It was found that at low drive rates, the transfer rate at
constant drive rate was reproducible to +5% from run to run,
However, at a higher drive rate (\}O = 031 Vs"’1), a range of
transfer rates was observed. Thus, despite the limited data
available, we can divide up the flow into critical and sub-
critical regimes.

Figure 5.1 is a graph of transfer rate against the drive
rate 90. In the sub-critical region (drive rate below
approximately O.1Vs'1), the results show a linear relationship
between the drive rate and the transfer rate. These sub-critical
flows have inertial oscillations superimposed on them, and are
typified by the example shown in figure 4.4(a).

At a drive rate of ﬁo = 0:31 Vs‘1, the run to run variation
in transfer rate was 9.7 to 18.2 x10™2 cmPs~'. There was no
correllation between O and AV, or Ah. The mean transfer rate
was 13.8 x 10=2 em?s~! and ‘the standard deviation was
2.8 x 102 cm?s=1. A typical flow of this type is shown in
figure 4.2, The transfer rates were approximately 30% higher

than expected, indicating the possible presence of an

Foling o

PITihs




Table 5.1

e e . e . . S —————— T ——— {—————— — — . —————— 1 W ——————— —

Sense | 4 | 0‘;{1051 £
of | ., I 5 4l
flow | Vs | em®s | um
| +0.005| +0.4 | +2
in | 0.31. | X2.2 | 150
out | 0,31 | 17.3 | -——-
in } 0.31 | 9.7 | 144
in | 0.31 | 10,2 | 110
in | 0.3 | 13.6 | 72
out | 0,31 | 14.8 | 70
in { G.31 | 11,7 67
out | 0.31 1 16.3 | 77
in | 0.31 | 15.8 | 75
out | 0.31 | 18.2 | =--
in | 0.31 | 10.8 | =—-
out | 0.31 | 15.6 | 83
in | 0,153 | 8.9 | 60
out | 0,029 | 4.8 | -~~~
out | 0.029 | 4.6 | ===
out | 0.014 | 2.6 | =---

It —_—— T~ ———————————— ——{——— — ———— f— - " - — - - - - —————
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unidentified systematic error. Although other workers35 have
observed transfer rates much higher than those reported here, the
normal range of O is generally between 9 and 13 x 10~5 cm®s=1,
The uncertainty of up to 10% in the capacitor calibration
(equation 4.9) could not account for all of this discrepancy.
However, a preliminary experiment to investigate flow over a
machined Stycast 1266 surface showed that high transfer rates of
the order of 17 x 102 <:.m23"1 could occur. The geometry of the
constriction may also be conducive to high flow rates (see
Chapter 6).

At equilibrium, before and after the steady flow, equation
(4.15) predicts a linear relationship between Vo and h. Figure
5.2 is a graph of Ah against AV, showing that this is found to
be the case, From. equation (4.15), the slope of the graph gives
the value of X/ Qozz

X/ = (6.1 £ 0.2) x 1073 cmv™!

If we introduce a dissipative chemical potential difference

A Mp into the analysis in section 4.4, we obtain:
B
h + M + Qoah = XV (5.1)

We now have two cases to consider: critical flow, observed
at \}'0 = 0.31 Vs‘1; and sub-critical flow, observed for "}0 < 0.1
vs~!. (It is believed that the point at V, = 0.153 Vs™! is in
the transition region between the two regimes.) An important
quantity in the following discussion is £, which is defined as
the difference between the value of h when the driving ramp is
switched off at tq, and the subsequent equilibrium value of h,
Figure 5.3 makes this clear. ¢ 1is tabulated in table 5.1.

For sub—critical flow, the data is not inconsistent with the

5.2
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assertion that the dissipation is a function solely of the

superfluid velocity and thus of h:
H + Fdiss(ﬁ) + C\)Oe h = O(VO (5.2)

To illustrate this, let us choose initial conditions such that
h=0, h=0 and Vp=0. At time t=0, we start to drive the film at a
constant rate \.IO. After the inertial oscillations (due to the h

term) have died away, the solution of (5.2) becomes:
= (Y ¢ 2 e : A Va/ IR A 2
h = (XVy/ )t Faiss( X Vg/ =)/ Oy (5.3)

Thus we expect h (and therefore the transfer rate o) to be
proportional to the drive rate 1'10. The second term in the above
equation is equal to £, which for these sub-critical flows was
too small to be measurable (less than about 2pm).

Taking the time derivative of equation (5.3) and using
(4,8), we obtain for the transfer rate:
Wy dy o -
—_— =¥
Pmin Sin& 92

Using the value of‘0</002 from figure 5.2, we can draw a line on

(5.4)

figure 5.1 representing equation (5.4). The data acquired at low
drive rates (below O.1Vs‘1) lie on the line, confirming equation
(5.4).

We now consider the critical flow data. In this case, the
transfer rate varied independently of \'IO and equations (5.2) to
(5.4) do not hold. The interpretation of & is also different.

For these critical flows, the dissipation is so large that
the film cannot "keep up with" the driving chemical potential
produced by the Vy ramp. In other words, the chemical potential
difference is being increased faster than the ability of the film

to decrease it by transferring liquid between the reservoirs.
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Figure 5.3 illustrates this. The chemical potential difference
between the reservoirs rises to a maximum of £g , when the ramp
is switched off and the chemical potential difference falls as
the liquid levels approach equilibrium at a new value of Vj.

The transfer rate is almost constant throughout this
process, implying that it is very weakly dependent on dissipation
(or equivalently that dissipation is strongly dependent on
transfer rate) in this regime. However,O is not reproducible
from run to run. This implies that for critical flows, the
dissipation is not specified uniquely by the transfer rate.

Figure 5.4 shows that & is approximately linearly related
to Ah. This relationship is explained in Appendix E. It does
not yield any important information about dissipation in the
film, and merely confirms the self-consistency of the

measurements.

5.2 Oscillatory Flow

Figure 5.5 is a tracing of a typlcal series of oscillations,
obtained as described in section 4.4, At time t4, the
differentiator was switched on, and the oscillations grew until
at time 2 the non-linear dissipation limited the film velocity
and hence the oscillation amplitude. Oscillations continued
until t3, when the differentiator was switched off. The
oscillations then decayed. These three divisions will be
referred to as the growth stage, the intermediate stage, and the
decay stage.

Table 5.2 gives the details of the sixteen series of
oscillations recorded. They are referenced by a number of the
form RxSy, where x is the number of the experimental run, and y
is the number of the series within the run. The series have been

divided into four groups (column 5 in the table); the
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Table 5.2

. o e e S e e S S e S . S B S B G B B ) S T e ) . S S e

|Ref.lo. | Tenp.|No.of |Period|Group|Growth | Decay |FB.| |¥p| | ¥ | Max. lh ol
_ | +0.01l0scs.| +0.3 | | Rate | Rate | | I | Ampl.|+ 0.4 |
| [ Oz | | s | | s7La7st s7la7el 1 s71 o s opm 1 oum
[ o s s e e e e e e e e e e e e e e |
1 2383 (31.18 | 30| 18,4 | 1 | 0.027 | 0,026 | © | 0.053 | 0.026 | 14.6 | 14.6 |
| R3s2 ] 1.16 | 19 |1 22.2 ] 1 | 0,026 | === |[|===] === | === | 16.8 | 14,0 |
| R383 | 1.16 | 57 | 16.8 | 2 | 0,0035] === |===| === | === | 2,8 | 2.7 |
| R3s4 | 1,16 | 65 | 18.0 ] 2 | 0.0030| === |===| === | === | 4,4 | 4.4 ]
M R3S4A _ 1.16 _ 4 _ 17.0 _ 2 _ Cock o) _ 0.056 _I<m~WOoON® _ O-ONQ*_ 11.2 ~ S i s m
| R3s4B | 1.16 | 7 1 1741 2 | === |.0:027 1 0 | [ | 12,0 | ==== |
| R385 | 1,16 | 4% | 187 | 2 J 0,0047] 0.025 } 0 | 0026 | 0.025 [ 5.8 | 8.2 ]
| R3s6 | 1,14 | 24 1 20.5 | 3 | 0.019 | 0.056 |-vel 0.038 | 0.019 | 13.5 | 12.5 |
| R3S6A | 1.14 | 9 119.6 | 3 | --- 10,017 | 0} === |0.0171! 7.0 | ===-|
| R387 |} 1.12 | 29 | 20.4 [ 3 | 6.017 | 04051 l-vel 0,035 | 0017 | 112 | 8.8 |
| R3s8 | 1.12 | 311 19.8 | 3 | 0,017 | 0,017 } 0 ] 0,035 | 0,027 | 9.4 | 7.4 |
| R3s9 | 1.12 ) 38| 20.7 | 3 | 0,017 | 0,018 | 0| 0.035 | 0,018 | 16.0 | 9.9 |
| R3s10 | 1.11 | 48 | 20.8 | 3 | 0.016 | 0.060 |-ve| 0.038 | 0.022 | 14.7 | 13.3 |
| R3511 | 1,30 | 58 | 20.7 ] 3 |1 0,016 | 0,018 | 0 | 0,033 | 0,018 [ 14,4 | 12,1 |
| R3812 | 1.10 | 112 | 21.12 | 3 § o0.016 | 0,028 { O | 0.034 | 0.018 [ 13,0 {:11.2 |
{ R5s1 | 1.16 | 160 | 17.2 | 4 | 0.019 | 0.024 | 0 | 0.043 [ 0.024 [ 11.3 | 10,8 |
] 1

——— - ———————— o o e e S S ——— " —————— ———— T " - - . T S — — — — ——————" ———— " - ———— —— — " ——_—



differentiator gain was changed for each group. Column 8
indicates whether the decay of the oscillations was under
conditions of no feedback, or of negative feedback. Column 11
gives the maximum value of Ah during the series. The values of
C, about which the oscillations took place were: groups 1 and 2,
C, = 12,7540 pF; group 3, Cy = 12,7720 pF; group 4, C, = 12.7616
pF. The oscillation amplitudes were up to 0.003pF.

Ignoring for the moment any non-linear dissipation, the
Robinson damping wilJ. give rise to a dissipative term linear in

the film velocity and thus in h

20p h (5.5)

Fdiss(h)

When the differentiator is on, Vy will also be propertional to

}i, and we can def'ine a constant 6F such that:
Vg = 208pn (5.6)

Substituting these two expressions into equation (5.2), we

obtain:
ﬁ+2(5R—5F)5 +@02h=0 (5.7)

If the positive feedback is so high that b’F exceeds D'R, then

the oscillation amplitude will grow exponentially. A log-linear

plot of the amplitude versus oscillation number should therefore

be a straight line, with a slope equal to (b’F - OR)T where T
is the period of the oscillations. With the differentiator
switched off, 5F becomes zero, and UR may be determined on its
own, If the sense of the feedback is reverééd, JF‘ becomes
negative, and the quantity | KFQ + Og may be determined.

The oscillation amplitude was quantified by measuring the

peak-to-peak amplitude every half oscillation. Thus in figure
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The following figures are plots of the
oscillation amplitude on a logarithmic
scale against oscillation number. The
step/plateau nature of some of the data (eg
in R385) is due to the finite resclution of
the measurements made on the chart recorder
tracings from which the data is derived.
The resolution of the amplitude-
measurements is approximately +£0.03 aumfor
R3S3 and R3S4, and +0.1um for the rest.
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5.5, A to B, B to C, C to D and so on, were measured. This
method largely eliminated any drift in the base line.

The amplitude of the oscillations is plotted on a
logarithmic scale against period number in figures 5.6 to 5.18.
It was observed that the oscillation amplitude in the
intermediate range was by no means constant. The features of
this amplitude variation are discussed in section 5.4.

Figure 5.19 shows the growth of R33S12 on an expanded scale.
The experimental points lie closely on a straight line, as
predicted by equation (5.7). (The slight negative curvature
indicates the presence of a small amount of non-linear
dissipation.) The slope of the line, divided by the oscillation

period T, gives the value of the growth time constant:
§p - ¥g = 0.0047 % 0.0004 s™1 for R3S5

Straight lines were also fitted to the growths and decays of the
other series. The values of the growth and decay constants
obtained are given in columns 6 and 7 in table 5.2. The
uncertainties in determining the slopes of the graphs amounted to
approximately 7%.

Knowing [0l - 8y and Wgl + Oy (or just ¥ if no
feedback) from the oscillation growths and decays respectively,
we can calculate the values of‘éF and 8g. These are shown in
columns 9 and 10 in the table. Good agreement was found between
values of 6F obtained from oscillations in the same group. Table
5.3 summarises the values obtained. Note that in group 2, 6F is
nearly equal to KR, thus causing very slow growths in R3S3, R334
and R385.

The value of 5R tends to fall with temperature, as shown in
figure 5.20. This is a feature of Robinson damping. The data

allows us to calculate the thermal time constant of the cell, and
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we do so in Appendix C. We also show that Robinson damping
adequately explains the variation of 6R°

The amplitude of the oscillation at the point where the
growth breaks away from a simple exponential has been recorded in

column 12 of table 5.2. This amplitude, h represents the

onset?
cnset point of non-linear dissipation. Approximating the
oscillations to a sinusoid of constant amplitude, we obtain for

the transfer rate at onset:

Oonset = S Nonset (5.8)
PminSin 92

The onset amplitude for R531 given in the table is the average of
the onset amplitudes for the initial growth and all the
intermediate growths which have the same slopé as the initial
growth. (See figure 5.18 and section 5.4), Similarly for R3S3.

In some of the series of oscillations, the onset of
dissipation is more gradual than in others. For instance, the
rate of growth of amplitude in R3811 becomes slower gradually as
the amplitude increases, making it difficult to specify exactly
the onset amplitude. In R3389, the rate of growth changes
discontinuously at an amplitude of 9.9pm, indicating an abrupt
increase in the rate of dissipation. For several oscillations
after this, the amplitude continues to grow approximately
exponentially, but at a slower rate, indicating that the
dissipation is still linear in the velocity.

Even in those series (such as R3S7) where the onset of non-
linear dissipation is abrupt, the onset amplitude is widely
scattered within each group. There would appear to be no
constant critical amplitude for the onset of dissipation.

To reduce the effect of the variation in onset, Oonset Was

evaluated for all flows, and averaged for each group. The
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;e -1 Je5t, |

|
| rate (s | (cm
----- P D It
1 |0.053+0.004 |0.02654+0.0005]12.7+1.5]
2 10.028+0.005 |0.0037+0.0007] 4.1+1.2]
3 10.035+0.002 ]0.017 +0.001 | 2.2%1.5]
4 10.043+40.003 ]0.019 +0.001 {11.0+0.9]|
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initial growth rate of the oscillations was also averaged for
each group. The results are given in table 5.3, and Oy,q.¢ 18
plotted against growth rate in figure 5.21.

The points to note from figure 5.21 are these. Firstly, the
experimental data lie nearly on a straight line of positive
slope, which does not pass through the origin. Thus, as the
differentiator feedback (and therefore the growth rate) is
increased, higher and higher film velocities are accessible
without non-linear dissipation setting in. Presumably, such
behaviour will not continue indefinitely, and at sufficiently
high growth rates, the line will flatten out.

Secondly, note that quite high transfer rates can apparently
be obtained without non-linear dissipation occurring. These
rates are nevertheless lower than those observed in the steady

‘flows.

Thirdly, we observe the important fact that figure 5.21
demonstrates hysteresis in the film, in that dissipation sets in
at a velocity which depends on the previous history of the film,
rather than at some constant velocity. This point is elaborated

on in sections 6.1 and 6.3.

5.3 The Period of the Oscillations

The period of the oscillations was measured for every
series. The time taken for ten zero-crossings in the same
direction was measured to obtain the average period over those
oscillations, The results reported in column 4 of table 5.2
represent the mean period during the "intermediate" stage, when
dissipation limited the oscillation amplitude. Care was taken to
use oscillations where the amplitude did not vary far from the

mean.

However, to quote a single figure for each series is
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misleading, in that the period was observed to increase with
increasing amplitude. The mean period at low amplitude during
the growth of the oscillations was typically about 5% less than
the value given in the table.

The variation of the period from series to series can be
explained by the different amplitudes of the series. Figure 5.22
is a graph of the period (as recorded in column 4 of the table)
versus the mean amplitude during the ten cycles over which the
period was measured. It incorporates all series except R3312 and
R5S51, which are discussed below. The graph shows a trend for the
period to be greater at larger amplitude. A least-squares fitted
straight line is drawn through the points. (Correlation
coefficient = 0,850).

This effect is also clearly shown in R3812, in the
intermediate stage during the slow fall and then rise (see figure
5.19). Plotting the mean period over ten cycles against the mean
amplitude during those cycles yields figure 5.23. A straight
line has been fitted to the data; the least squares method gives
the equation of the lineas T = a + bh where a = 18.8 s, b = 2.15

X 103 S cm"1

. However, this line is evidently different.from the
variation in period between the series (figure 5.22).

In R531, during the slow fall and rise (see figure 5.18),
the variation in period is almost zero. For a change in
amplitude from 7.2 to 11.0/Am, the period changes from 17.1 to
174 s. This finding is consistent with the observed dependence
of the velocity on amplitude in R581. For that series, the
output of the differentiator was monitored on the chart recorder,
and the peak to peak velocity swing measured every half-cycle.

The velocity was found to be proportional to the amplitude over

the entire amplitude range. This implies that the oscillations
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were sinusoidal and the frequency was constant during R531.

Thus, we can say that the period appears to vary linearly
with amplitude, but the rate of such variation is not always the
same, Film thinning as a possible source of the period variation
is considered in section 6.4.

A theoretical prediction of oscillation periocd may be made
using equation (4.16), provided that the integral I given by
equation (4.14) is known. A film thickness profile of the form

d(z) = dg 2713 (5.9)

was used, where 2z 1is the height in centimetres of the film
above the bulk liquid level and do is the film thickness at a
height of 1 cm. The integral was evaluated from the known cell

geometry to be:

Ieato = (1.0 # 0.07) x 100 cm™?

ca

where dg was set to 3.0 x 10~0 cm, Substituting this value of I

into equation (4.16) gives an estimate of the oscillation period:

Teale =352 s

It should be noted that in the calculation of I , only 25%
of the contribution to the integral comes from the Melinex disk
and the constriction. Most of the kinetic energy of the film is
thus located in the remainder of the flow path.

Tcalc is nearly twice the experimental value T The

expt’
most probable source of error of this magnitude is the integral

I. Substituting the value of T for group 3 into (4.16)
t

exp
yields:

Texpt = (3.3 + 0.1) x 10° em™1,

which -is approximately three times smaller than the calculated
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value.

Campbellu3 has noted that a leak, forming an additional
parallel flow path between the reservoirs, can increase the
oscillation frequency by providing extra area for the flow. The
denominator in the expression for I becomes (p1+p2)d0 where pq
and pp are the perimeters of the main path and the leak
respectively. In the present geometry, the only possible extra
flow path between the two reservoirs would be a leak past the
support~rings of the Melinex disk constriction. Any other
leaking joints would leak into the main bath, which would lead to
an immediate filling of the entire cell with liquid helium.

The decrease in I required to increase the frequency by a
factor of two is 75%. This is a far greater change than would be
obtained by removing the constriction entirely. A leak of this
size would also lead to an overestimation of the transfer rate by
several times. We can therefore conclude that there is no major
leak between the resevoirs.

The possibility of a smaller leak contributing part of the
difference between the experimental and calculated periods may
also be considered. Such a leak might explain the higher
transfer rates observed. However, Campbell43 has shown that one
characteristic of such a two-path situation is an asymmetry in
the inertial oscillations between one flow direction and the
other, which occurs when there is a persistent current through
one path, returning through the other. Such a current will be
created whenever the film is driven to the critical velocity
along one of the paths. By looking at the inertial oscillations
after steady flow in the critical regime, we can determine
whether there is a leak or not. Examining the oscillations
obtained in this manner, we find that the cell passes the test.

An anomalously high frequency has been reported by previous
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investigators, who have usually explained it in terms of an
increased film thickness, For instance, Glick and Werntz'C used
the oscillation frequency as a function of film height to
determine the film thickness profile (equation 5.9). They
inferred dgy to be approximately 100 nm, three times as much as
the value that is usually quoted and that was assumed earlier in
this section., Again using the oscillation period, Hallock and
Flintuz found dy to be between 41 nm and 51 nm, depending on the

substrate. In the present case, estimating do from I gives

expt
dg = 90 nm % 10%. Our results are therefore not incompatible
with those from previous experiments.

However, an alternative (or supplementary) explanation for
this discrepancy is that the effective microperimeter of the flow
path is considerably larger than the macroscopic geometry
indicates. This could be caused by surface roughness created
during machining of the Stycast 1266. Because of the relatively
small contribution to the integral from the smooth Melinex disk,

a larger perimeter in the remainder of the flow path would have a

correspondingly large effect on the integral.

5.4 The Intermediate Oscillations

We discuss here the intermediate oscillations occurring
after the initial growth has been checked by the onset of non-
linear dissipation, but before the differentiator is switched off
to allow the oscillations to decay away.

If (for the low frequencies reported here) dissipation was a
universal, unchanging function of the superfluid velocity, one
would expect that the oscillations would grow to such a size that
the energy imparted to them by the driving force was equal to the

energy dissipated, per cycle. This constant amplitude would be

to Pt
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maintained throught the intermediate stage. The non-linear
dissipation would also lead to the introduction of odd harmonics
into the oscillations. Such constant amplitude behaviour is
observed, but it is far from being universal. The best example
oceurs in R3811 (figure 5.16). This type of behaviour will be
referred to as mormal” or "type I" behaviour. Other examples
oceur in R3S7 and R3S10 (figures 5.12 and 5.15).

A second type of behaviour is seen in R3S12 (figure 5.17,
oscillations 16 to 25) and R5S1 (figure 5.18, oscillations 15 to
40). There is a slow fall to lower amplitude, which is
maintained for a number of oscillations, and then a slowly
accelerating growth. This results in a characteristic "U" shape
in the amplitude/time graph. This behaviour will be referred to
as "type II", It is possible that the slow decrease observed
during the intermediate oscillations in R3S6 would have developed
into this type of behaviour, .

"Type III" behaviour occurs in R3S1, R3S10 and R3312. It
consists of a sharp fall in amplitude, followed by a slow rise.
The dissipation causing the fall in amplitude all happens in one
half-cycle; the data point half way down the fall is half the
peak-to-peak amplitude of this half-cycle. The subsequent slow
rise is exponential, but is at a slower rate than the initial
growth rate (prior to onset).

"Type IV" behaviour is very similar to type III, except that
the growth rate is equal to the initial growth rate, implying
the absence of all intrinsic dissipation. Type IV behaviour is
observed in R333 and in R531 (oscillations 40 to 90). In both
cases, a number of such falls and subsequent growths occur
together (thirteen in R5S1). The amplitudes at which the sudden
falls occur have been averaged to obtain the transfer rate
O onset in table 5.3 (see section 5.2).

5.13
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It is believed that the four types of behaviour classified
above describe all the major features of the intermediate
amplitude behaviour. No previous experiment has supplied energy
to the oscillations continuously, and these interesting types of
behaviour have never been seen before. Further discussion of

these observations is postponed until Chapter 7.
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CHAPTER 6
VORTICES AND DISSIPATION (I)

6.1 Introduction

In this chapter and the following one, some theoretical
ideas and analyses are presented which go towards an explanation
of some of the experimental results described in the previous
chapter. In section 6.2, the steady flows are discussed, and the
likely effect of the experimental geometry on the transfer rate
is elucidated. The onset of non-linear dissipation is discussed
in section 6.3. Section 6.4 is a discussion of the possible
origins of the observed variation of frequency with amplitude.
Chapter 7 describes a theory of the intermediate oscillation
behaviour. The present section contains preliminary remarks on
features common to all the theoretical work in subsequent
sections.

We first emphasise the need for a theory of dissipation in
the saturated film which incorporates vorticity in the film as a
variable (or variables) on the Same footing as the superfluid
velocity, Most previous theories have derived expressions for
the dependence of dissipation on superfluid velocity, without
allowing for a dependence on the vortex density. We have seen in
the previous chapter that there is a multiplicity of flow rates
for the same voltage ramp rate; that there is hysteresis in the
onset of dissipation in the oscillations; and that the amplitude
is not uniquely determined by the rate at which energy is
supplied to the oscillations. These results show that the
dissipation in the film cannot in general be described solely by
the velocity.

Some previous experiments have also demonstrated hysteresis

in the film. The transfer-rate transitions observed by (among
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others) Allen and Armitage19, Harris-Lowe and Turkington35, and
Toft36, indicate that the velocity is not solely dependent on
driving force. The persistent current experiment of Eckholm and
Hallock103 demonstrates that hysteresis can occur in the
unsaturated film as well.

From these observations, it is obvious that at least one
further variable is required to describe the behaviour of the
film. That this variable is connected with the vorticity present
in the film seems beyond doubt. It is also clear that the
traditional method of presenting results in the form of a
dissipation/velocity graph is not necessarily useful in all cases.

There are a variety of alternatives for the type of
vorticity present in the film. A tangled mass of vortex lines -
"spié%%tti" - has been used to explain the flow of bulk liquid in
broad channels105; in the helium film, however, the energy of
such a tangle would be much higher, and it would therefore be
unlikely to occur. Vortex lines parallel to the plane of the
film have also been suggested1°6, as have vortices pinned at one
end and trailing downstream32; and perpendicular to the film but
free to move!%7,

For the present work, we have chosen the last of these
possible situations. We assume the existence of vortices
perpendicular to the plane of the film, which are not pinned to
the substrate, but are free to move under the action of the
forces acting on them. The reasons for this choice are as
follows.

The success of the Kosterlitz=-Thouless theory (see section
2.2) in describing the superfluidity of the unsaturated fiim in
terms of two-dimensional vortices suggests that a three-
dimensional extension of this situation might be relevant to the

saturated film. Theoretical calculations by J G M Armitage and
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the author 107 also used vortices with this orientation to predict
the variation of transfer rate with temperature. A further point
in favour is that the theoretical analysis of the perpendicular
orientation is much simpler, whereas the parameters of a vortex
line parallel to the film have not yet been calculated32.
Finally, this orientation provides a simple parameter which is
easy to define and calculate -~ the vortex density, which we
define as the number of vortices of either sign per unit area of
film.

Since the energy required to create a vortex of circulation
K is proportional to‘ﬂ<2, we assume that only vortices of unit
- eirculation are present. It is also worth noting that such a
vortex whose end becomes pinned to the substrate will remain
there, perpendicular to the film, wunless it can acquire
sufficient energy from the flow to either leave the pinning
site89, or to increase its length, depart from the perpendicular
and start to be.swept downstream32. We do not find it necessary
to include explicitly pinning behaviour in order to explain the
experimental results.

The hydrodynamics of a quantised vortex line in liquid
helium has been worked out by several author589’94’108’109. In
the frame of reference where the normal fluid is stationary (the
laboratory frame in the case of the helium film), the vortex is
acted on by four forces. These are: a normal-fluid drag and a
normal-fluid 1lift, arising from the scattering of thermal
excitations from the vortex core; a Magnus force, due to the
relative motion of the vortex line and superfluid; and possibly
an external force per unit length £. The sum of all these forces
must be zero, since a vortex is just a flow configuration and has

no intrinsic mass.
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Let ¥ g represent the superfluid velocity evaluated at the
vortex core, and y; the vortex line velocity. The balance of the

f‘orceé can then be written:
/s Nx(y=vy) = vy - (L K)uxy +£ = 0 (6.1)

where K is the circulation of the vortex, and ¥ and ' are
constants representing respectively the normal-fluid drag and
1ift forces per unit length. For a vortex in two dimensions,
this equation can be solved108 for y;, which we resolve into two
components vy and v, , respectively parallel and perpendicular to

the superfluid velocity Xgt

v, = ov £/%
\ s"'/6 /% (6.2)
v, =/@"s ” Sf/«ps
where
§= 37%/11+G67)H3
= +7/[1+(39)2]
£ =27 7 (6.3)

$=1=- y'/%/os
= Oyl

e and i take the sign of the vortex circulation. In deriving
equations (6.2), we have assumed that f£ has no component
perpendicular to Yoo

Campbell108 gives the value of § as 1 ex‘cept very near the
lambda point, so the third term in equation (6.1) can be ignored.
The value ofy is strongly temperature dependent; at T=1.15K,
7=10%, Thus B=10"2,

For a free vortex, the contributions to v, at the vortex
core from other vortices in the film will average out, and vg is
Jjust given by the overall superfluid velocity Ug due to bulk
transport. However, two vortices may approach so closely that

the vortex contribution to vy is comparable to u The
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characteristic distance at which this occurs is given by R~'k/us.
Depending on the relative signs of the vortex lines, they may
scatter off each other, or may bind or annihilate each other.

The discrete nature of the thermal excitations which
interact with the vortex core to produce the terms in LV and !
in the equations, means that a "noise" term [ (t) should be added
to equation (6.2). This term is effectively the Brownian motion
of the vortices in the surrounding gas of thermal excitations,
and is important in the unsaturated film87'94. Due to this
Brownian motion, vortices will diffuse through the film with a
diffusion constant D given by:

kg T

D= : ; (6.4)
oK

(see Ambegaokar et al., reference 94, second paper, equation
(2.4) and appendix B). For the unsaturated film, because of a
lack of experimental data, D has been estimated from dimensional
arguments94 to be of order K— 10~3 cm25'1. For the saturated
film (and also bulk liquid helium), the experimental results of
Rayfield and Reif56 have been interpreted by Campbell‘[08 who
obtains the value of/9 given above at T=1.15K. This implies
that the value of D is approximately 10-14 cmzs‘T, and we see
that diffusion due to Brownian motion is negligible in the
saturated film at this temperature.

Equations (6.2) contain terms in an external force f per
unit length, parallel to Vge Such a force will arise from any
change in the film thickness d. The energy of a vortex 1iné of

length d is:
E =/%)(2d In(a/R) / 477
where a is the vortex core radius and R is a cut-off radius,
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equal to the mean separation of the vortices. Therefore, if the
vortex is in a region where there is a film thickness gradient
Vd parallel to ¥4, it will experience a force per unit length

due to stretching of the vortex line:
£ =% K2vd 1n(a/R) / 4TTd

Changes in the filﬁ thickness will arise from the
requirement that the chemical potential on the film surface must
everywhere be the same (in the absence of dissipation). In a
vertical region of the film on a flat substrate, this will lead
to a film profile given by equation (5.9), If there is an
internal "corner" on the substrate, it will fill with liquid,
held there by surface tension to form a meniscus. This will
produce a very large Vd. The shape of such a meniscus is

calculated in Chapter 8.

6.2 The Effect of the Experimental Geometry

The presence of the Melinex disk in the flow path causes the
film to flow radially inwards to the central hole, through the
hole, and radially outwards on the downstream side. Conservation

of mass requires that the velocity at radius r is:
vg(r) = vgro/r (6.6)

where vy is the velocity at the hole, which has radius rg. There
is thus a large velocity gradient in the vicinity of the hole.
This experimental arrangement was originally chosen with the
intention of confining the largest velocity and hence the
dissipation to the hole. We shall show that this is not the
case,

We will consider for the present steady flow (vS =

constant)., It is useful to estimate the approximate vortex
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density required to produce the dissipation observed in the flow.
The starting point is Anderson's phase slippage requirement that
the number of vortices per second crossing a streamline (N)
should be related to the consequential dissipative chemical

potential difference by:

Ay = %N (6.7

(See section 1.3.) The number of vortices crossing a streamline
per second per unit length of streamline is just nv, where n is
the vortex density. N is therefore nv, integrated along a

streamline from one reservoir to the other, and thus we have:
Dy = Kfn v, dl (6.8)

For the purpose of showing it not to be the case, we now
assume that the dissipation and hence the vorticity is confined
to the immediate vicinity of the hole. Specifically, let us
assume that n is zero except over a length L = 30}Am parallel to
the flow. If we take for A/,LD the quantity ge with €= 100pum,
we obtain from equations (6.8) and (6.2) that n = 107em™2. The
mean vortex separation is therefore 1//n'= 3},¢m. However, in
travelling L = 304m downstream, a vortex will move (in the
absence of any external force) a distance of only 8L = 0.3um
perpendicular to the flow. This is only one~tenth of the inter-
vortex separation, and (on average) will not bring vortices of
opposite sign close enough together for annihilation to occur.
Therefore, vortices will move downstream from the hole, and the
remaining 90% of the streamlines will be crossed further down the
flow path. This particular experimental geometry thus separates
the region of maximum velocity from the region of maximum

dissipation.




It is possible to derive an estimate of the minimum extent
of the dissipation region based on the above considerations. We
make the approximations n = constant and Vg = constant within the
dissipation region, which is of length L. From (6.8) and (6.2)
we have n = A}).D/’%/G vgl. However, /9 L must be at least as long
as 1/4/n in order that vortices of opposite sign annihilate
before leaving the dissipation region. We therefore obtain for

the length of the dissipation region:
L: D> ’KVS//BA/AD (6-9)

For‘/6= 10-2, Vg & 30cms™! and App/g = 100um, we obtain
L > 0.3cm. Because of the approximations noted above, (6.9) is
not directly applicable to our experimental geometry.

All previous experiments on film flow have been performed in
geometries where the minimum flow perimeter Ppmin Was maintained
for a considerable length (generally greater than the RHS of
(6.9)). Effectively all the dissipation occured within the
minimum perimeter region, and Ppin Was therefore an important
parameter. The definition of transfer rate as o= Vmein (where
V is the rate of change of volume in one‘reservoirﬁ allowed the
velocity in the dissipation region to be calculated as simply
vg = (P/P5)0/d with d the film thickness.

However, in the present situation, the velocity in the
dissipation region is lower than the velocity at the point of
minimum perimeter. Since dissipation limits the superfluid
velocity, it is reasonable to assume that the velocity in the
dissipation region is the same in the present radial flow
situation as in the usual case of linear flow. The velocity at
the central hole (and thus the calculated transfer rate) will
therefore be greater than in the linear flow case. In other

words, to compare the transfer rates in the two cases, we shduld
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use the flow perimeter in the dissipation region rather than the
minimum perimeter of the path in our calculation of &.

The transfer rates listed in table 5.1 were calculated using
Pmin® The considerations above show why the values obtained are
higher than those found in other experimental geometries.

In order to make a more precise comparison of the two
situations (radial flow and linear flow), we will allow the
vortex density to vary over the length of the film. For
definiteness, we consider a linear flow experiment on (or in) a
tube of constant perimeter 2Tr, ,@cm long. The radial flow path
is an annulus of inner radius rg and outer radius rq. In the
experimental geometry, rg = 0.03<_:m and rq = 0.30cm. Our object
is to calculate the dissipation in each case.

We shall assume that vortices are created at a rate R per
second at the upstream end of the flow path. They are
annihilated at a rate Cn® where C is a constant (see section
7.2). First of all, we calculate the vortex distribution as a
function of Lor r. The starting point is the differential

equation for the vortex density:

Din 2n
i = — + Y.Vn = -Cn? (6,10)
Dt 2t

For steady flows, we shall assume that 9n/9t = 0; in other
words, we ignore vortex relaxation effects. From equations (6.2)

and (6.6), we obtain in the radial case:
dn/dr = -anr/voro (6.112)
and in the linear case:

dn/d/ = -anr/vo (6.11b)
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Integrating these equations, we obtain:

n(r) = ngl14Cng(rlarg?)/2vyrol™" (6.12a)
n(f) = ngl1+Cngl/vyl™" (6.12b)

where ng is the vortex density at the upstream end of the path.
ng may be calculated from the rate R as follows. At the upstream
end of the path, there will be R/2Mry vortices created per second
per cm width of film. In width dw of film, one vortex will be
created every ero/Rdw seconds, by which time the previously
created vortex will have moved downstream a distance dl =
v02ﬂ?0/Rdw. There is thus one vortex every dl.dw cm2, so the

vortex density at the start is:
ng = R/2Mrqgvy (6.13)

We now calculate the dissipation using equations (6.1), (6.2),
(6.8) and (6.12). We obtain in the radial and linear cases

respectively:
272
B Kvargh ra=/r;
ki ol 21 20 ' (6.14a)
2—Cnol"o/V0 1+(l"1 —Y‘o )Cno/ZVOr‘O
Mgy = (8K vy2/C) 1n [14Cngl/vg] (6.14b)

Various functional forms for the dependence of vortex
creation rate on superfluid velocity have been proposed in the
past (see Chapters 1 and 2). Provided such functions vary
sufficiently quickly with Vs film flow experiments are often
unable to determine which functional form is correct. We are
therefore free to choose any suitably fast function for R(vo)
without fear of unduly predjudicing the final result. For

algebraic simplicity, we choose:

R = Ry Vg (6.15)
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where Ry is a constant and A>2 in order that equations (6.14)
should not diverge (see section 7.2).

To compare the two situations realistically, we must choose
a suitable value forZ. Two choices suggest themselves: that
the length of the dissipation region should be the same in both
cases (l=r1~ro); or that the vortex density at the end of the
flow path should be the same in both cases., The latter
alternative is chosen for algebraic simplicity. There is no
qualitative difference in the results if the other option is

selected. Setting (6.12a) equal to (6.12b) yields:
2U/ry = A-1 (6.16)

where A = r12/r02 = 100 in our experimental geometry., For
convenience, we define a dimensionless velocity V and a

dimensionless dissipation D by:

VA2 = yg ~2crg/aTr
D = (AMp/KAC) . (CRy/UMZ/ (A=2)

Substituting these equations into (6.14), we obtain

A2

Dp = —— In {8/[1+(a=1)V'"2]} (6.17a)
1~ VA2
Dy = V¥ In {1+(A-1DV*"2} (6.17b)

The dissipation is always less in the radial case than in the
linear case (see Appendix A). Figure 6.1 is a graph of D versus
V for the two cases, with A = 100 and A= 12.

If Dg = Dp, the ratio between the radial and linear
velocities is approximately VR/VL = 1.3 for V< 1.2. At larger
V, the ratio becomes smaller. The value A= 12 has been chosen
so that this ratio corresponds to the observed discrepancy

between the transfer rate in our geometry, and the lower transfer
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rates observed in most linear flow experiments (see section 5.1).

At low values of V, the dissipation is proportional to V)‘.
At large V, however, it varies much more slowly: Dx V2 1n V.
This is true in both situations. Because the dissipation in the
steady state is known to be a steep function of V, ilj. is likely
that we are in the regime V << 1.

From equations (6,12), we see that for V << 1, most of the
vortices survive to reach the outer rim of the Melinex disk., At
the rim, there exists a surface tension meniscus, in the corner
between the disk and its supporting epoxy ring. On reaching the
meniscus, the vortices will experience a force due to their
increasing length. vg will fall as the film becomes thicker, and
v, will also fall. v, will tend to fall because of the reduced
Vgy but this will be more than offset by a rise due to its
dependence on f.

Using the simple quadratic expression d = dg + kz® for the

film thickness, where z is the distance from the top of the

meniscus (compare equation (8.15)), we obtain:

VN — V1d0(1—ﬁ232)/(d0+k22)

v V1d0(1+$2)/(d0+k22)

L=
where vq is the superfluid velocity at the start of the meniscus
and s = 2k'K1n(R/a)/2mA8 vqdg. We find that k/d0~4x10"5cm"2,
and s ~ 8x10"‘cm"1, and we are therefore free to ignore the term
in k22 in the denominator of the above equations.

Note that v becomes negative for z > 1/,@85 — O.1lem. This
means that the vortices are confined to the region z < 1/,@13, and
must all annihilate within it. Since the presence of vortices
may alter the shape of the meniscus, the problem becomes
extremely complicated, and is unsuitable for analytic solution.

We can say that if V<<1, meniscus dissipation becomes important,
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FIGURE 6.2 Flow (a) outside and (b) inside a cylindrical
tube, The positions of the surface tension
menisci are arrowed.




and indeed may dominate the dissipation on the disk. However,
the considerations described at the beginning of this section
will still apply, and the radial dissipation will be less than
the linear dissipation for the same v

A further source of possible inaccuracy in our results is
that we have taken into consideration vortex creation at only one
point in the film. In the radial flow case, the large velocity
gradient near the hole, combined with the strong dependence of
creation rate on vg, ensures that very few vortices will be
created elsewhere in the film. In the linear case, there may be
vortex creation over the entire length of the dissipation region:
this can only increase the dissipation, and the result that the
radial flow is less dissipative than the linear flow still holds.

The analysis does not account for the large variation in
fransfer rate from flow to flow. Such a variation could come
from a change in C or Ro. It is difficult to see how vortex
relaxation could play a part, since each flow takes place at
constant velocity.

There is an interesting consequence of our results which has
implications for linear flow experiments, If the linear flow
takes place on the outside of a cylindrical tube (figure 6.2a),
there will be a meniscus at either end of the tube, at the
minimum flow perimeter. However, if the flow is on the inside of
the tube (figure 6.2b), the meniscus will occur at some larger
perimeter where the superfluid velocity is smaller. If our model
of the dissipation is correct and meniscus dissipation is
important, the dissipation will be greater in the former case,

and one would expect a lower transfer rate to be observed.

6.3 The Onset of Dissipation

We now turn to the inertial oscillations described in
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section 5.2. Exponential growth of the oscillations under
positive feedback from the differentiator is terminated by the
sudden onset of non-linear dissipation. Ip section 5.2, we found
that the oscillation amplitude at which this occurred was related
linearly to the growth rate of the oscillations. It is clear
that the non-linear dissipation does not occur at a eritical flow
rate.

However, it is obvious that the onset of dissipation occurs
at a critical value of "something" - some unknown physical
quantity X which builds up as the amplitude of the oscillations
increases. We can conceive of X as the density of some sort of
vorticity. When X exceeds a certain critical value Xa»
dissipation will occur. We assume that X is created by

superfluid flow, and therefore obeys an equation of the form:
X = f(vg) or £(h) (6.18)

where £(0) = 0. We are restricted to even functions f(h), since
we wish X t6 be monotonically increasing with time. Given f(h),
the above equation may be integrated to obtain X(t) or X(m) where
m = £/T is the period number. We can then determine the value of

m when X = X,, and hence the amplitude h ¢ at that point. For

onse

f(h), we assume the form:
£(h) = A Ihf (6.19)
h and h are given by:

h = hoeytsin Wt and h = (Dohoezstsin( Wt D)
where sin ¢ = /Wy and cos ¢ = T/wyg
Integrating equation (6.18), we obtain:

zwm/o%t
X(m) - Xg = Acthhy J'e Isin(@t+ )| dt
0
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The integral may be evaluated to give:
X(m) = X + Ahg(c/ cy) ("M 1)coth k

where k = m¥/2wW= JT/4 (see Appendix B), The value of m for
which X(m) = X, is thus given by: '

Bm = In {1+(X,-Xq) (cO>g/<oAhg)tanh k}
and the corresponding amplitude honset is therefore:
h = e = by o+ (X.~Xn) (/A tanh k
onset = hO 5 h0 ¢™0 0/

For our experiment, k << 1, so we can approximate the above

equation to
honset = o + (k+0(k3))(Xc—X0)/A

If Xc is constant or zero, then a plot of honset against k (or
equivalently Og,..¢ against J) should be a straight line. Figure
5.21 is such a graph; it yields the following approximate values

of the parameters:

hg = 3.8 um
(X,Xg) /A = T3 pm

The function f(h) = AR was also tried, but was found to
lead to a quadratic dependence of obnset on J, which is not
supported by the experimental data. We can therefore infer that
X obeys an equation of the form (6.18) with f(h) = Afhl.

We can only speculate as to the n?ture of the quantity X. It
can certainly be said that it is not equal to n, the density of
free vortices, since dissipation will always occur when n is non-
zero - there is no critical value n, which must be exceeded. It

might be that X is some form of "trapped" vorticity, which when
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it reaches a critical density, escapes and is able to cause
dissipation. The flow of the film would then require three
parameters to describe it fully: the velocity, and the densities
of the two different kinds of vorticity. Dissipation would be a
two-stage process; the creation of trapped vorticity due to flow;
and its subsequent escape to form free vortices capable of
causing dissipation. There is insufficient data at present to be

able to say whether this is more than speculation.

6.4 The Variation of the Oscillation Period

It is convenient to include here a discussion of the
variation of period with oscillation amplitude that was mentioned
in section 5.3. Figure 5.23 shows that the period varies
apparently linearly with the amplitude, increasing by 7% up to
the maximum amplitude of 12um. This type of behaviour has been
observed by other workers, Flint and Hallock51 observed a
variation of up to 3% in the period, while Campbell et al.uu
observed a 5% change.

Flint and Hallock were able to explain their results in
terms of the kinetic thinning of the film. As the amplitude
increases, so the mean square superfluid velocity rises, causing
the average film thickness to decrease. The period, which is
inversely proportional to the square root of the film thickness
(see equation (4.16)), will then increase. We can calculate the
magnitude of this effect as follows.

Let d(1) be the film thickness at a distance 1 along the
flow path. dg(1) is the static film thickness, given by (5.11).

The Kontorovich equation for the film thinning is:
d = dg (1+,osv32/2/<>gz)‘1/3 (6.20)
We can express Vg in terms of T, the perimeter p, and ppyi, using

*>6~'~1,6 ke, peds
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equation (4.12), in which we substitute dg for d. (6.20) is then

approximately:
d = dg (1=0ppi,? 0°/682/4,0°dg%) (6.21)

In equation (4.16) for the oscillation period, the film thickness
appears only in the integral I. We can now calculate I using

(6.21) and (4.14):

J’ di
I-= e
2., 2
dgp(1-A/zp%d )
where A = 252/6 We obtain:
= ©oPpin O 08 We o ain:
I = I, (1+AT4/I.) (6.22)

where :lZs is the value of I ignoring kinetic thinning, and Iqis

dl
I, = :
d ~[zp3ds3

From the geometry of the experimental cell, and using equation

the integral:

(5.15) for the film profile, we calculate Ig= 5.1/d03. From
(6.22) and (4.16) we have:

w? = w02(1"/°pmir12 U2R/6g/0s)

where R is the ratio Id/IS- = 1.9x1011cm"5. We replace o@ by its
average value, and the fractional change in period is thus:
al /Opmingge
P
which is proportional to the mean square transfer rate and hence

to the square of the amplitude. At O‘:1O""‘<‘:m‘gs“1 we obtain a

value of AT/T ~ 6%, much less than the observed variation.

The effect of film thinning on the oscillation frequency is
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thus negligible in our experiment. This is because so much of
the flow path has a large perimeter, and therefore a low
superfluid velocity. The only significant change in film
thickness due to kinetic thinning occurs in the region of the
constriction., However, this region does not contribute very much
to the kinetic energy integral I on which the period depends, and
thus the effect is very small. The experimental geometry of
Flint and Hallock51 had a relatively long region where Vg was
high, and this contributed most to the integral I. The effect of
film thinning was therefore more pronounced in their experiment.
It should be noted that the predicted change in period is
proportional to the square of the amplitude. The scatter of the

data in figure 5.23 does not allow us to reject completely the

possibility that the observed relationship is really quadratic.

The unexpectedly large variation in period has also been observed
by Campbell et anl.m'l They reported a change in period eight
times larger than the predicted change due to film thinning.
Unfortunately, they did not say whether the change observed was

linear or quadratic in the amplitude.
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CHAPTER 7
VORTICES AND DISSIPATION (II)

T.1 The Equation of Motion in the Phase Plane

In this chapter, a theoretical model of intrinsic
dissipation during the inertial oscillations is presented. By
combining the equation of motion (5.1) of the liquid level h with
an equation of motion for the vortex density, the time
development of the oscillation amplitude may be calculated. The
calculation is performed by computer, using the numerical method
of analytic continuation. The details of this method of solving
a differential equation are given in section 8.3.

For convenience, we again set down the equation of motion of

the film under positive feedback through the differentiator:
h+20h+ Opfh = -y2Aup/e (7.1

where 0= 6R - KF < 0 and Aly is the intrinsic dissipation in the
film. Our object is to solve (7.1) numerically. The
disadvantage of applying the method of analytic continuation to
this equation directly is that the desired oscillatory solutions
have large second derivatives at their extrema. In order to
maintain accuracy, it would therefore be necessary to include at
least the second derivative in the Taylor expansion of h(t) (see
equation (8.16)) at the expense of computing time. For this
reason, the calculations were carried out in the phase plane, and
only the first derivative was used.

Let us define dimensionless quantities x and y, proportional

to h and h respectivly:
X = COoh/B y = l:l/B (7.2)

where B is a constant with the dimensions of a velocity, which we
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leave undetermined for now. From (7.2), we have that X = Ghy. x
and y are Cartesian coordinates in a phase plane. We can

eliminate time from (7.1) to obtain the equation of the phase

trajectory:
coodk
A S _____.A_*P.=_9. (7.3)
dx y Bgy y

- where D represents the dissipation, and a is a dimensionless

constant proportional to the growth rate:

For positive feedback, a will be negative. D must always have
the same sign as y; If a and D are zero, the solution of (7.3)
is just a circle, representing simple harmonic motion at constant
amplitude.

It is more convenient to work in polar coordinates (r, 8).

Rewriting (7.3) in these coordinates, we obtain:

de  (ay+ D)y
d® ~ r+(ay+D)cos®

(7.5)

We have retained y in the equation as shorthand for r.sinf. The
case D=0 is simple harmonic motion with a damping term a. In

that case, the solution to (7.5) may be determined analytically:

r(d) = rol1+(a/2)sin 201-1/2 F(E)

where 20 (7.6)
F(P) = ___g_dg___ = 28 tan™! El—)”(tan G + a/2)~k
(2/a+sind) Lo o

o

ro is a constant of integration. For [a/2]<<1, (7.6) reduc;as to
the spiral r‘:roeag .

We shall also find it necessary to work out the time at
which a point on the curve is reached. Since x = (Jyy, we have

that &pdt = dx/y. Now, x = x(r,&), and r and & are both
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functions of t. Therefore

=2 o 288, 222 . prPSInG + raos ©

Multiply by dt/y to obtain:
Wodt = dx/y =-d® + cot® dr/r (TT)

In the case where a and D are both zero, the path is a circle,
and hence dr=0. We thus have Coodt = -d® , and we see that the
system point moves clockwise as time proceeds. To obtain the
time at any point on the path, (7.7) may be integrated from any
suitable starting point,

To obtain the oscillation period T, we integrate (7.7) over

d @from 0 to -2, using (7.5):
aar

_ (ay+D)cos&
Wol = 2T - J; r+(ay+D)cos @ 4G (7.8)

When D=0 it is easy to show that (7.8) reduces to the expected
formula 27T/T = a)0[1-(a/2)2]1/2. ‘

A computer program (similar to that in Appendix D) was
written to solve eqﬁation (7.5). Given a point [r(&),P] on the
phase trajectory, an adjacent point [r(® +28), 9+ 48] is
calculated from the Taylor series expansion, retaining only the
first order term in AQ (see section 8.3 for details of analytic

continuation):
r(e +46) = r(®) + aedr/de (7.9)

where dr/d® is given by (7.5). 4@ is set to -1.0°, so that
r( @ + A9 ) is later than r( @), The difference in the results
between using a value of -5° and -1° for A8 was 2% over five
cycles. r is printed out every 1800, when the velocity is zero

and the displacement x is at an extremum. These values of r are
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thus the amplitudes of every half-cycle of the oseillations, and
correspond to the measured amplitudes plotted in figures 5.6 to
5.18. The period was calculated by converting the integral (7.8)
to a summation over the intervals ae€,

The program was tested by setting D=0, when exponentially
increasing oscillations should be obtained. Using the value
a=-0.109, corresponding to the group 3 oscillations, a plot of
the logarithm of the calculated amplitude against the period
number gave a straight line of slope T la|, as expected (curve O
in figure T.1).

The consequences of using a dissipation function D which
depends only on velocity was also investigated. Three

dissipation functions were tried:

D(y) = sign(y) Dy e~/ 1Vl -(7.10a)
D(y) = sign(y) Dy Iyl , X=10  (7.100)
D(y) = sign(y) Dg H(lyl-1) (7.10¢)

where H is the Heavyside unit step function.

The first of these exhibits saturation at large vy.
Examining (7.5), we see that if -a > D(y)/y for all y, the
amplitude of the oscillations will increase without limit. The
maximum value of e~/ 1Vl/y is 1/e at y=1, and thus if Dy < -2.Ta,
energy is supplied to the oscillations faster than the
dissipation can remove it. This pehaviour could be reproduced on
the computer ( curve 1 in figure 7.1).

For -a < Do/e, the oscillation amplitude rose exponentially
for ri<1, and then flattened off at a "plateau" value %q
dependent on the value of Dj (curves 2 and 3 in figure T.1).
This constant amplitude Xo is determined by the requirement that

the energy supplied to the oscillations per cycle should be equal

(A
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to the energy dissipated per cycle. Multiplying equation (7.1)
by ﬁ, using (7.2), and integrating over one period, we obtain
the energy equation for the oscillations. At constant amplitude,

it reduces to:
a<y®> = <yD(y)> (7.11)

where < > indicates the average value over one period. This is
an equation for the oscillation amplitude on the plateau in terms
of Dy, and is applicable to any dissipation function D(y).

The plateau corresponds to type I behaviour as discussed in
section 5.4, The oscillations contain odd harmonics, and the
period of oscillations on the plateau are larger than the
oscillation period at low amplitude by approximately 0.2%.
Unfortunately, it is not possible to deduce a value for Dy and
hence the attempt frequency . of section 2.1 from the
experimental results, since we can measure only the plateau
amplitude inum. We do not know the value of B (equation (7.2))
which for the ILF dissipation function (7.10a) is proportional to
vg (see equation (2.5)).

The dissipation function (7.10b) exhibits behaviour very
similar to curves 2 and 3 in figure 7.1. Since it does not
saturate at large y, the oscillation amplitude always limits
whatever the value of Dy

The discontinuous dissipation function (7.10c¢) was also
tried in an attempt to reproduce type IV behaviour (sudden drop
in amplitude followed by growth at the usual exponential rate).
In this case, B is interpreted as the critical velocity for the
onset of dissipation. If Dy > -a, the oscillation amplitude
limits in the manner described above. If Dy < ~-a, the amplitude
continues to grow exponentially, at a lower rate. No type IV

behaviour is observed.
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A variation on the discontinuous dissipation function
(7.10e) is to incorporate a hysteresis band. Dissipation
commences at a rate Dy when ly| exceeds a critical value ¥qs and
does not stop until |y| falls below a value y, < yq. This
"function™ was also tried in the progrém, but it was found that
as in the other cases, the oscillation amplitude quickly reached
a plateau value.

Considering these results, it is likely that any function
D(y) dependent only on velocity will lead to type I behaviour.
In order to explain the other types of behaviour observed, we

must introduce an extra variable.

T.2 Vortex Density Changes

In this section, we introduce an equation of motion for the
average vortex density n. The actual physical distribution of
vortices will not appear in the calculation, since any theory
which incorporates vortex density gradients must also take into
account the presence of surface tension menisci ., and the problem
at once becomes extremely complex. By using just the average
density n, we retain the major features of such a theory, while
realising that the numerical values of any parameters we derive
will be subject to correction. We are thus considering here a
"global" theory as opposed to a "local" theory such as that
described in section 6.2.

The dissipation in the film is given by equation (6.8),

which with n and ¥ constant gives:
Aftp = Knv, 1

where 1 is the length of the dissipation region. The dissipation
function D of (7.3) is thus:

7.6
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D =Ry Knv 1/Bg (7.12)

where we have substituted 8vg for v, . We now use equations

(4.12) and (7.2) to express vg in terms of y, to obtain:

where
_ K pwpdy 1

g /_O;Sin92 pd

h &k 102 cm?

where we have used the (experimental) value of I (equation

(4.14)) for the term 1/pd.
It is convenient to define a dimensionless vortex density N

as follows:
N = kn/lal (7.14)

Substituting (7.13) and (7.14) into (7.5) and remembering that a

is negative, we obtain:

ar _ a (1-M) y2
de = r+a(1-N)y cos®

(7.15)

Clearly, for N < 1 the oscillations will grow, while for N > 1
they will decay. Using (7.1%), N=1 corresponds ton = 2 x 103
vortices per cm2 in the film. This should be regarded as a very
approximate correspondence, in view of the approximations made in
deriving the value of k.

The next step is to introduce an equation for the time

development of N:
dN/dt = RC(N,y) - Ra(N,y) (7.16)

where Rc and Ra are vortex creation and annihilation rates

respectively. The time development of the oscillations is
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determined by solving (7.15) and (7.16) simultaneously, with
specific functions for R, and R..

Four creation rate functions were tried:

Ry = Ry &/ 1¥1 (7.17a)
R, = Ryg e!¥! (7.17b)
R, = Ryp Iyl” 5 A=10 (7.17¢)
R, = Ryg H(lyl-1) (7.17d)

(7.17a) is just the rate of vortex ring creation by thermal
fluctuations, according to the ILF theory (section 2.1). For
y<<1, the function increases steeply with y, but flattens off for
y>>1. (7.17b) is appropriate to a situation where there is a
large reservoir of pinned vortices which acts as a thermally
activated source of free vorticesS9., The third function (7.17c)
is the dissociation rate of two-dimensional bound vortex pairse7,
and is appropriate to the unsaturated film, when A is given by
(2.11). The fourth function (7.17d) is just a step function in
the velocity. It was chosen to try +o reproduce the abrupt
changes in dissipation observed during the oscillations, and
currently lacks any theoretical justification.

Two different annihilation rates were used:

R, =Ry N2 |y| (7.18a)
R, =Ry N° (7.180)

The first of these is dependent on the velocity, and was used in
reference 107 with regard to dissipation in beaker film flow. It
can be derived as follows. The lifetime of a vortex is
proportional to the time it takes to travel one inter-vortex
separation perpendicular to the flow (whereupon it annihilates

with a vortex of the opposite sign). This is just T= N‘T/z/vL.

7.8 : P .

et gt s o

woskt,




The annihilation rate Ra is therefore proportional to
N/ = N3/2V_L.

The above derivation assumes that vortex motion is
determined only by the bulk flow of the film. It also has the
disadvantage that at zero velocity the vortices do not
annihilate, which is at best only approximately true. For these
reasons, (7.18b) was also tried. The randomness of vortex
distribution means that the probability per second of one vortex
annihilating is proportional to the number of vortices N/2 with
which it can annihilate. The total annihilation rate is
therefore this probability times the total number of vortices N,
R, is thus proportional to Ne. (7.18b) has been used by a number
of am'chorsas’89’95’10'4
where as remarked in section 6.1, Brownian motion is dominant and
therefore the equation is certainly valid. Although we have
shown in that section that Brownian motion is not dominant in the
saturated film, it is nevertheless unclear whether (7.18a) or

(7.18b) is the appropriate expression for the annihilation rate.

7.3 The Computed Results

Equations (7.15) and (7.16) were solved simultaneously by a
Fortran program running on a System 3 Cromemco microcomputer,
The latest version of the program is given in Appendix D. The
equations are analytically continued from predetermined starting
conditions, which are usually r=1, £=0 and N=0. Increments ar
and AN are calculated by multiplying the right-hand sides of
(7.15) and (7.16) respectively by A8 =-1,0°,

The program listing is followed by a sample of its output.
Four columns are printed on each line; the logarithm of r, the
logarithm of N, the elapsed time t (in seconds) and the

difference between the current time and the time of the

T.9
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previously printed line. One line is output every 180° and the
fractional difference in period is printed out every 360° This
is defined as (T-Tp)/Ty where T is the period of the computed
cycle and Ty = 2“rr‘/o.>o. The program stops after a predetermined
number of cycles, with twenty oscillations taking up to
approximately two hours, depending on the form of Ro.

The continuous creation functions (7.17a, b & c¢) were tried
in the program. Figure 7.2 is typical of the results obtained.
There is little essential difference between the results using
the three functions, After some initial amplitude "bounce", the
oscillations settle down to a constant amplitude dependent on the
values of R,y and R,p. The vortex density exhibits similar
variation before stabilising near N=1. The fractional change in
period is greatest when N is large, but it never exceeds 1.5%.

The results are much the same whether (7.18a) or (7.18b) is
used for the annihilation rate, except that with the former, it
is possible to have a situation where the oscillations go into a
decay from which they cannot recover. As the amplitude (and
hence |y|) falls, vortices are annihilated more and more slowly,
and N may never fall below 1. Thus from (7.15), the oscillations
will continue to decrease indefinitely. Such behaviour was never
observed experimentally.

We now leave the continuous creation rate functions to
concentrate on the step function creation rate (7.17d), which
gives very different results from the other three functions.
Figure 7.3 shows the time development of the oscillation
amplitude and vortex density for (7.17d), with (7.18a) for the
annihilation rate. The similarity between figure 7.3 and the
experimental data in (eg) figure 5.17 or 5.18 is apparent.

If there are few vortices in the film (low R,g), then the
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amplitude stays approximately constant near r=1, with only very
small "dips®. This sort of behaviour is very similar to the type
I constant amplitude behaviour of section 5.4.

The depth and duration of each amplitude "dip" is determined
by R, and by Ng, the number of vortices in the film at the start
of the dip. Even at constant R.,q, NO will vary depending on the
length of time the system has spent in the vortex creation region
lyl > 1. For this reason, it is more convenient to start with a
known Ny and perform the calculation only in the region r<t,
where there is no vortex creation. When r exceeds 1, the
calculation terminates. We can then investigate the effect on
the amplitude of altering Ny and R 5. R, does not enter into
the calculation for r<i.

Figure T.4 is a graph of the amplitude against the period
number at Ra0=0.06 s"1 for various values of Ngj. Equation
(7.18a) was used for the annihilation rate. As N, increases, the
depth of the amplitude dip, the time for the amplitude to reach
the bottom, and the time for it to recover its initial value (ie
r=1) all increase,

It is clear that at small Ny, the amplitude variation
closely resembles the type IV behaviour observed experimentally.
All the dissipation occurs within the first ecycle (or first 1.5
cycles at the most), and thereafter the amplitude rises at the
original rate determined by 5% and KR.

At larger Ny, the recovery time is many cycles long, and the
amplitude falls below 0.2. This is similar to the type II
behaviour of R5S1 in terms of the timescale of the recovery, but
the experimentally observed depth of the dip (down to
approximately 0.6 of the initial value) is much less than the
computed depth.

Increasing Ng further results in a non-recoverable fall in
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amplitude, as described above.

Larger values of R,q tend to decrease the depth of the dip,
and compress the time over which the dissipation occurs. If,
however, we decrease Rao, the vortices spend more time in the
film before annihilating. Smaller values of Ng thus produce
similar decreases in the oscillation amplitude. There is also a
change in the shape of the curves. Using a small value of Ng
means that the dissipation is small, while the low annihilation
rate means that the dissipation occurs over a greater period of
time. Relatively slow, shallow dips in amplitude can thus be
generated, remarkably similar to type II behaviour., Figure 7.5
shows such a curve, very like the type II behaviour in R5S1.

The second expression (7.18b) for the annihilation rate
gives results which are very similar to those obtained using
(7.18a). There is a difference in the behaviour with very large
Ny, since with (7.18b) N always eventually falls-below 1-and the
amplitude, having fallen to a very low level, eventually starts
to rise again. Since such behaviour was never observed
experimentally, this difference is of no consequence.

To summarise, we find that our vortex relaxation model
reproduces the type I, type II and type IV behaviour well, at the
expense of allowing the vortex annihilation rate to vary during a
run. Type IIT behaviour (a sudden drop followed by a rise at a
reduced rate) is not explained by the model as it currently
stands. The results do not allow us to decide between the two
postulated forms for the annihilation rate. The step-function
creation rate seems to be neessary to explain the abrupt onset of
dissipation. However, the critical oscillation amplitude (or
film velocity) at which this occurs appears not to be a constant

(as evidenced by the varying maximum amplitudes in R5S81). The
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large variation in period is not explained by the theory.

Possible reasons for the remaining discrepancies between the
theory and the experimental results include the previously
mentioned fact that the theory is a global rather than a local
one. The proportion of dissipation which takes place in the
menisci may alter as N changes, thus complicating the situation.
We have also ignored the conclusion drawn in section 6.3, that
generation of free vortices may be a two-~stage process.
Incorporating the variable X from that section into our theory
would introduce a third differential equation and one extra
adjustable parameter, to further complicate the equations.
However, such a process might explain the variation in the
vortex-creation velocity. Thirdly, the rate at which the
oscillation amplitude recovers after its fall_in type II and type
IIT behaviour is lower than the expected rate based on the values
of JR and Jpe This strongly suggests that there is still
significant vorticity present in the film.

Nevertheless, major features of the experimental results are
described qualitatively by the model, and hopefully further
refinement of the theory will result in a better agreement with

the results.
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CHAPTER 8
THE SURFACE TENSION MENISCUS

8.1 Introduction

In Chapter 6, it was pointed out that any film thickness
gradient would result in an effective force on the vortices due
to their changing length. Such a change in thickness will occur
wherever there is a surface tension meniscus, The calculations
of section 6.2 show that most of the dissipation in the film may
well take place in the meniscus region, and this is corroborated
by recent theoretical work on dissipation in beaker film
flow107. It is therefore important to know the shape of the
meniscus where it joins onto the film, and how the shape changes
at different film velocities.

The differential equation describing the shape of the
meniscus, when modified to include the van der Waals force and
the Kontorovich thinning term, becomes unsuitable for analytic
solution., With the aid of a computer, we can calculate the film
profile near the bulk surface to an accuracy of better than 0.5%,
using the numerical technique of analytic continuation. This
method has the advantage of being easily extended to the case of
dissipative flows.

Where there are vorticeé perpendicular to the plane of the
film, the chemical potential will be increased due to the higher
mean square superfluid velocity, or equivalently due to the extra
pressure exerted by the tension in the vortex lines., From
section 6.1, the vortex tension is}/%?@ 1n(R/a) /47, and the
extra pressure P is just this times the vortex density n. The
additional fterm in the chemical potential due to "vortex

pressure" will thus be:

P/p = (K2n/bT) In(1/alm)
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where we have used 1/{T for the cut-off radius (see section 6.1).
The magnitude of the vortex contribution to the chemical
potential can be estimated from the above equation as

24-2

approximately 10=9. n g em®s In the meniscus region, the

vortex density can be up to 107 cm"‘2

, as described in reference
107. Under such conditions, the vortex contribution to M is
comparable to the other terms, and the meniscus shape will be
considerably modified,

When there is dissipation, the chemical potential (given by
equation (8.1) below, plus the above term P/ ) will have a
gradient over the length of the film, which from equation (6.8)
is equal to ®nv,. This differential equation could be solved to
yield the total chemical potential difference over the flow path
for a given transfer rate. Some progress has been made in this
complex calculation107; however in this chapter we shall ignore
dissipation and set n=0,

Note that in this chapter, the notation does not always
correspond with that in previous chapters. In particular, we use
the symbol h rather than d to refer to the film thickness.

The work presented in this chapter has been published in

Cryogenics, volume 22 p.527 (reference 110).

8.2 The Theoretical Model

We consider an incompressible superfluid forming a layer of
thickness h on a solid vertical wall.which extends out of a
superfluid bath. On ‘the surface of the film, at a height z above
the horizontal bulk liquid level, the chemical potential is:

Va2 )
- Nl s . - OB,y g32 (g g
P“—p . * B Q 2 dg? dz
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where vg is the superfluid velocity at that point, X is the

surface tension, and (L is the van der Waals potential:
QL= - a/h3 (8.2)

When there is no dissipation, the shape of the surface is
determined by the condition that the chemical potential (8.1)
should always be equal to the chemical potential at the surface
of the bulk liquid, which is A= 0. The problem is thus to find
the appropriate solution of (8.1) for various values of the film
flow rate.

The superfluid velocity on the film surface changes in
magnitude and direction as we move down the film, always
remaining tangential to the film surface. To solve (8.1)
exactly, it should be solved simultaneously with the appropriate
differential equations for vy, which incorporate conservation of
mass and momentum, and the requirement of irrotational flow.
However, in section 8.3, we shall show that it is sufficient to
make the approximation that vg is constant over the thickness of
the film at a given height (even in the meniscus region).

Conservation of mass then requires that:

/PgVgh =0 (8.3)

where o~ is the film transfer rate. This equation is certainly

valid above the meniscus, where dh/dz << 1.

Using equations (8.2) & (8.3), (8.1) may be written:

o o g2
CZ Ll v g - — 20+ DAY2 2 0
A2 n W Pz dz

We now introduce a dimensionless height, x = z/zo, and a

dimensionless thickness y = h/ho. 20 and ho are given by:
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202 = 205//08

(8.5)
a/h03 = g 2

Zg (~7 x 10"2 em) is the height to which the surface tension
meniscus would rise in the absence of the van der Waals force. hy
~6 x 10"‘6 cm) is the thickness of the static film at a height
of zy cm in the absence of surface tension. The ratio of these
quantities, A = hy/zy, is of order 1078,

Equation (8.4) may be rewritten in terms of these

dimensionless units:

2
‘5‘9-1 2 e ek BOE N <A“)2 3372 (8.6)

d vy
where B is a dimensionless flow dependent quantity given by:

e (8.7)

For o= 10"4cm2$"1, B is approximately 1.4,
For x>>1, the curvature of the film is so small that surface
tension is negligible, and the ordinary (Kontorovich) equation

for the film thickness is applicable:

x +B/y2 - 1/y3 = 0 (8.8)
Solving for y, and using (8.5), we obtain:

h = (a/2g2)V3{(1+/ Tage/z Y V3401- [1azzz ) V31 (8.9)

where the flow dependent quantity Zg is what we have called the

"Contorovich length':

= (0 070:)3/54 g a® (8.10)

At a flow rate of 10~ cm25'1, zg is of the order 3 x 107 -2 ¢
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For z >> zy, the expansion of (8.9) to lowest order in the flow

term is:
h = (a/gz)”"/ 3{1-(zg/42)V/3 (8.11)

At small x, the film is pulled out by surface tension, y
becomes large, and the terms in 1/y2 and 1/y3511equation(8.6)
become negligible. If these terms are set to zero, the resulting

equation may be solved analytically111 to give:

/2 x2
¥y = —— {co h"1 - 2/1-%= }+yy (8.12)
fﬂ

Aj2

where yg is a constant of integration. This is simply the
equation of the classical meniscus in the absence of van der

Waals forces, and in this case Yo is given by:
= {1 = (cosh™1/2)//2}/A (8.13)

Thus, for x << 1, the solution of (8.6) is very close to (8.12)
with some value of yq; and for x >> 1, it is very close to (8,8).

The only previous published work on this problem seems to be
that of Arkhipov112, where it was also studied in connection with
calculations on dissipation in the flowing film. Arkhipov assumes
that (8.8) is a sufficiently good solution for x > 1. He then
approximates the term linear in x in equation (8.4) to 1 in the
region x £ 1. The resulting equation may be solved analytically,
and he obtains a solution (his equation (20)) which for the

static case we can write in dimensionless form as
x =1 = AY20p1/2)V2 4 (10/6)V 200sn~ {(y+2)/Cy-1)}  (8.14)

Unfortunately, this solution is unsatisfactory for the following
reasons.

Equation (8.14) diverges as y tends to 1. This is the result
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of the boundary condition imposed on dh/dz, which was that it
should be zero at x = 1 (equation (18) in reference 112), In
fact, Arkhipov's solution (8.14) does not join onto the ordinary
film profile at any point, and is 25% in error at x = 1. (Figure
2 in reference 112 illustrates this, although the discontinuity
is shown smaller than the calculation indicates.)

Secondly, the behaviour of (8.14) as y becomes large is also

unsatisfactory. At large y, (8.14) tends towards
y=(x=-1)2/4 (8.15)

(cf equation following equation (20) in reference 112). This is
also the limit of the classical equation (8.12) for x close to 1.
However, these two limits do not pertéin to the same range of x,
and the curves of (8.14) and (8.12) do not join.

A more basic drawback of Arkhipov's method is that it is
inapplicable in the presence of dissipation. Our method of
solution may be extended to cover the case of dissipative flows,

as described in the previous section.

8.3 The Method of Solution

To determine the correct film profile, a solution of (8.6)
is required which behaves like (8.8) at large x, and like (8.12)
at small x. To solve (8.6), the technique of analytic

contim:ation1 13

was used.
If y(xg) and y'(xy) are known for some point xg, then
y(x0+Ax) and y'(x0+ Ax) may be found from their Taylor series

expansions:
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(ax)?

21

Y(xgrax) = y(xg) + T¥'(xg) + Y1 1(xQ) + eee (8.16)

(ax)?
21

y' (xg+ax) = y'(xq) +e1—'?-'y"(xo) + yHUxg) + e (8.17)
The second and higher derivatives are determined from equation
(8.6) in terms of the lower derivatives which have already been
calculated. Provided Ax is sufficiently small, repeating this
procedure indefinitely yields a series of values of x and y(x)
which lie on the required solution curve.

This method was chosen because it was found to be relatively
easy to control the shape of the solution by adjusting the
starting conditions, and because it was capable of being extended
to the case of dissipative flows.

The boundary conditions are set by taking the slope y'(xo)
from the classical meniscus and varying the thickness at that
point y(xo) until a match is obtained with the van der Waals
equation (8.8) higher up the film. An initial value of Xg = 0.9
was chosen, since at that point the classical solution is valid,
thus ensuring that the meniscus joins the bulk liquid level
correctly.

The calculation was performed in Fortran on a mainframe
computer. Starting at X, the program calculates y, y' and y"
as x is incremented up the film., If at any point y'' becomes
negative (indicating the film is too thin), y(xp) is incremented
by £, and the calculation restarts. If y' becomes positive
(indicating that the film is too thick), y(io) is decreased by &
and the calculation starts again from Xge The amount € by which
y(xo) changes is reduced by a factor of 2 each time, so that the
program effectively performs a binary search to find the

appropriate y(xo). When £ falls below 10‘9, the program prints
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out the final profile and terminates.

It should be pointed out that the curves y(x) obtained by
using different values of y(x() are all solutions of (8.6). The
binary search for the correct y(xy) is merely a way of selecting
the solution which satisfies the boundary condition (8.8).

A step size of ax = 5 x 10'4 was chosen. Increasing this by
a factor of 2 did not change the results by more than 0.5%,
whereas decreasing it below this figure added substantially to
the computing time required. The Taylor series expansions were
calculated up to and including the third derivétive. The fourth
derivative was incorporated on a trial basis, but was found not
to influence the results by more than 0.01%, while adding about
20% to the time required.

A very fine adjustment of y(xj) (to greater than one part in
109) resulted in a match between the computed solution and
equation (8.8) of better than 0.2%, over a vertical height 1 < x
< 1.04 (for the static case) before the computed solution
diverged. For the moving film, the vertical height over which the
match was good was reduced.

The results are shown in figure 8.1 for %He at 0 K, for a
variety of film flow rates. The square root of the film thickness
is plotted in order to include a wider range of thicknesses, and
to aid comparison with the classical meniscus, which from
equation (8.15) appears as a straight line with intercept zj.
Note that the negative curvature of curve 3 in figure 8.1 is a
result of plotting Jh, and is not a real effect. The meniscus
shape for 3He at 0 K is shown in figure 8.2. In the calculations,
instead of equation (8.2), the van der Waals potential was

represented by
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g e §3< 1421 (8.18)
which incorporates retardation effect,s.114 For uHe on a metallic
substrate, d' = 8.09 x 10~%cm and a = To76 % 10~ om5s~2, For
thicknesses h >> d', (L varies as h~", Use of (8.18) slightly
complicates the equations, but the principle of solution is
unchanged. For T = 0, we calculate hy = 5.74 x 10~6 om and zg =
7.29 x 10~2 em.

Temperature variation of both the superfluid fraction and
the surface tension were incorporated; the only discernable
difference between the calculated profiles for O K and 1.6 K was
a difference in z; due to the change in surface tension.

The shape of the surface tension meniscus is found to be
essentially unaltered by the van der Waals forces for x < 0.95.
It is, however, shifted outwards a distance of 8.2 x 10~6em
relative to the meniscus position in the absence of the van der
Waals force. This offset, g, varies with flow rate, and is
calculated by subtracting the y, determined from (8.12) and
(8.13), from the final y(x,) determined from our calculated
solution. q is plotted against flow rate in figure 8.3. The
meniscus is pulled in rapidly as the flow rate increases.

The point at which the meniscus joins the ordinary film
profile decreases by only 2% between the stationary film and a
film flowing at a rate 0= 1.2 x 1074 cm@s=1 (see Fig. 1). Thus;
the height of the surface tension meniscus is relatively
insensitive to film flow rate.

We can now confirm that the approximation involved in
equation (8.3) is valid. At a value of y = 15, the kinetic term

proportional to v52 in equation (8.1) is approximately 0.5% of gz
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for a flow rate of 1.2 x 10~ em2s-1, Equation (8.3) is still
valid at this point. Provided that the kinetic term (VSZ)
decreases at least as fast as gz as we go further down the film,
the error introduced by our approximate kinetic term B/y2 (which
decreases much faster than gz) will be kept to less than 0.5%.
Now, for potential flow round a corner of radius r, the velocity
is approximately proportional to 1/r. In the surface tension
dominated part of the profile the radius is proportional to 1/z.
The kinetic term thus decreases as 22, and the above requirement
is satisfied.

Based on these considerations, it is believed that the
computed profiles are accurate to at least 0.5%. To summarise,
for x < 0.95 the profile is just the classical meniscus (8.12),
shifted horizontally by a flow dependent amount g. There is a
transition region for 0.95 < x < 1.05, while for x > 1.05, the
usual Kontorovich profile (8.8) applies.

The method described in this chapter is not restricted to
the case of a vertical wall entering a liquid helium bath. By
using the appropriate boundary conditions, any experimental
geometry may be modelled.

I would like to thank J G M Armitage for demonstrating how
to alter y(xp) to make the solution satisfy the boundary
condition (8.8), and for the idea of plotting /h' rather than h in

figures 8.1 and 8.2.




CHAPTER 9
CONCLUSIONS

9.1 Summary of Results

A number of conclusions can be drawn from the experimental
and theoretical results presented in the preceeding chapters. In
the first place, we can summarise the lessons learned about the
particular experimental techniques used.

The concept of using a sealed cell filled with helium gas at
room temperature and providing a very small working volume of
liquid helium has been shown to be feasible, However, the "DC"
experiments (section 5.1) and the capacitor calibration (section
4,1) show that extremely careful attention to the uniformity of
capacitor plate spacing and the relative heights of the
capacitors is necessary to make full use of the available liquid.

The electrostatic drive mechanism is also workable, although
the dielectric strength of liquid helium limits the chemical
potential difference which can be achieved. Analogue programming
of the driving potential has been shown to be a very useful
method of controlling film flow, and the Film Drive Unit which
was constructed is suitable for a variety of film flow
experiments. The most important design consideration for such
equipment is flexibility, and the provision of capability for
expansion.

The two pulse mechanisms for the elimination of unwanted
oscillations were shown to be effective, although some skill is
necessary to select the correct pulse height and/or duration.

Let us now consider the film flow measurements. Because of
the variations in capacitor plate spacing and the small available
range over which which flow could be studied, detailed

measurements of DC flow were not undertaken. However, those
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results which were obtained indicate that in the critical region
there are a variety of possible transfer rates for a given
voltage ramp rate. It is thus not possible to "set" the transfer
rate by dialling up a particular drive rate on the FDU, as had
been hoped. The second point to note about DC flows in this
geometry is that the transfer rates can be considerably higher
than in geometries where the minimum perimeter is maintained for
a longer distance,

Because the inertial oscillations occur only in a small
region of the capacitor plates, variations in plate spacing do
not affect them, and they were studied in detail. Measurement of
the Robinson damping enabled the thermal relaxation time of the
cell to be determined. Positive feedback through the
differentiator in the FDU is a completely new way of studying the
oscillations, and incorporating the film in a feedback loop in
this manner has' produced some surprising results. We
particularly mention the sudden falls in oscillation amplitude,
characteristic of types III and IV behaviour (section 5.4).

Both the DC and AC results indicate that the transfer rate
and level difference alone are insufficient to characterise the
state of the system. There must be one or more "hidden
variables" which affect the dissipation.

The theoretical work presented in Chapters 6 and 7 attempts
to provide a partial explanation of some of these experimental
results. Based on the premise that dissipation is due to the
motion of vortices oriented perpendicular to the plane of the
film, we have shown in section 6.2 that the large DC transfer
rates observed are probably due to dissipation occurring away
from the minimum perimeter of the flow path. This particular
experimental geometry, chosen in an attempt to strongly localise

the dissipation region, in fact has the effect of separating the




region of dissipation and the region of maximum velocity. We
have also demonstrated (equation (6.9)) that there is a minimum
length of the dissipation region if such vortices are responsible
for dissipation.

The experimental observations of inertial oscillations under
feedback were also analysed theoretically. The onset of non-
linear dissipation was found to depend on the rate of oscillation
growth, and this could be interpreted as showing the existence of
some form of "trapped" vorticity which becomes free and able to
cause dissipation when some critical trapped vortex density is
attained.

By solving an equation for the time development of the
density of free vortices simultaneously with the equation of
motion of the film, some of the other features of the
experimental results could be reproduced. Various velocity
functions for the creation and annihilation rates of vortices
were tried. It was found that a "step function" creation rate
gave results which were nearest to the observed oscillation
behaviour. No other theoretical justification for such a
creation rate currently exists. The experimental results do not
permit distinction between the two functions postulated for the
vortex annihilation rate.

Despite the general agreement obtained between the model
postulated and the experimental results, there are several
aspects of the observed behaviour which it does not explain.
Possible reasons for this are given at the end of Chapter 7.
éerhaps the most notable discrepancy between the model and the
results is the observed variation of oscillation period with
amplitude. This variation has been shown to bé much larger than

predicted by film thinning, and is similar to the variation found
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by oﬁher workersuu. The phenomenon remains unexplained.

The shape of the surface tension meniscus in liquid helium
is derived numerically in Chapter 8. The shape is important,
since vortices will be swept downstream and may become trapped in
the meniscus, where they will cross streamlines, causing
dissipation. The model of vortex dissipation presented in
Chapter 7 is approximately independent of where in the film the

dissipation actually occurs.

9.2 Suggestions for Further Work

There are a number of questions which are suggested by the
work presented in the preceeding chapters. There is scope both
for further experimental work and theoretical development, and we
first of all consider the fonnér.

The positive feedback technique for studying the inertial
oscillations is a useful one, and much more data could be
acquired. The apparent linear relationship between the onset of
non-linear dissipation and growth rate (figure 5.21) requires
consolidation. More data on the intermediate oscillations is
also required, particularly at low values of feedback, just
sufficient to cause oscillation growth. The type IV behaviour of
R3S3 is remarkable, and invites further study.

The results of Chapter 5 were observed at only one
temperature. It will be very interesting to see how the
temperature affects the oscillation behaviour, particularly at
low temperatures where Robinson damping is absent.

The experiment presented has two major differences from
previous experiments: the positive feedback technique, and the
radial flow geometry, with its consequent large velocity
gradients. A future experiment might use a more traditional

geometry to determine which of the experimental observations are
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due to the geometry and which reveal themselves through the use
of positive feedback.

The large observed amplitude/period variation is also worth
further study: its temperature and geometry dependence have yet
to be established. In this connection, it would be interesting
to see whether (under positive feedback) the oscillations depart
from strict sinusoidal behaviour, as observed by Campbell et
31.44

We did not in this experiment investigate the effect of
positional (rather than velocity) feedback on the oscillations.
Such feedback should affect the oscillation frequency, and it
might be possible to obtain a "frequency response curve!" for the
dissipation.

The experimental apparatus was found (for reasons discussed
earlier) to be unsuitable for extended studies on DC film flow.
In many ways, DC flow is simpler than AC flow, and DC
measurements are a most useful way of studying the film.
However, this experiment, in common with all two-reservoir and
beaker flow experiments, has the disadvantage that the transport
of bulk liquid through the film tends to reduce the driving
chemical potential difference by altering the liquid levels in
the two reservoirs. It would be more useful to be able to set up
a chemical potential difference without worrying about changes in
Atp as time progressed. This might be done using the FDU in the
following way. Establish a chemical potential difference 4Mp
using a voltage stgp. When the transfer rate is established,
- ramp the voltage at an appropriate (velocity dependent) rate to
compensate for the rate at which the 1evelidifference is
changing, thus maintaining a constantt%MD between the reservoirs.

However, even this method may run into difficulties.

Perhaps entirely new methods of studying DC flow are more
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appropriate. Galkiewicz and Hallock'15 have created a persistent
current entirely in the saturated film, and the decay of such a
current would provide information about the dissipation in the
same way as the experiments of Eckholm and Hallock 193 have done
in the unsaturated film., Unfortunately, for the saturated film,
no decay was observable over a 10 hour period, and either much
longer timescales or more sensitive velocity measurements are
required.

Experiments on liquid helium in space are now becoming
feasible. In the absence of gravity, transfer of bulk fluid
through the film no longer results in the chemical potential
difference between the two reservoirs changing. It would thus be
possible to have two reservoirs, maintained by electric fields,
and to set up a4u between them by use of a bias voltage. Film
transfer would then occur at a constant a4 until one reservoir
was exhausted or the other full.

Let us now turn to the theoretical models discussed in
Chapters 6, 7 and 8. Experiments are possible which would test
aspects of these theories. In Chapter 6, an experiment is
described to compare flows on the inside and outside of a
cylindrical tube, which would test whether (and at what
temperatures) meniscus dissipation is important. Observation of
the meniscus shape and comparison with the theoretical results of
Chapter 8 could detect the presence of vortices in the meniscus
region.

There is scope also for further theoretical work on the
model. A local version of the theory in Chapter T is needed, and
theoretical justification of the step function creation rate
needs to be looked into. The way in which the presence of

dissipation alters the meniscus shape is another thorny
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theoretical problem.

We conclude by mentioning that the particular geometry used
in this experiment allows high superfluid velocities to be
probed, for the reasons discussed in section 6.2. The velocities
achieved in the hole in the Melinex disk were up to 60 cm s=1,
It may be possible to design an experiment where the difference
between the minimum perimeter and the perimeter at which vortex
dissipation occurs is so large as to permit superfluid velocities
above 103 em s~! in the constriction. This might enable Landau

creation of rotons to be observed in the saturated film.
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APPENDIX A

We shall show that Dp<D; for V>0 by showing that the ratio
Dp/D;<1. From (6.17a and 6.17Tb) the ratio is given by:

Dg VM2 In{a/[1+(a-1)V*-2])

b 1-V"2  In{1:a-1)V2)
£(Ax)/Af(x)

where x = [(A=1)V*2 4+ 11/A and f(x) = (x~1)/1n x. Now,

f{x+5x) - f(x)

el = 1im
_§->O Sx
f(01+31x) - (143 £(x)
=> xf1{x) = £(x) = 1lim
$-+0 5.
But, xf'(x) - £(x) = {In x - (x-1)}/(In x)2 < 0 for all x >0.

The equality holds for x=1. Thus (except possibly at x=1) it is

possible to choose an integer n sufficiently large that for

_§=(ln A)/n,
£E1481x) = (145) £(x)
< 0
3
=> FOO1+81x) < (1+3)£(x)
=> FCL1+31™) < (143)0£(x)
Taking the 1limit as n-—-—e, and remembering that

A=1im(1+(1n A)/n)?, we have that f(Ax) € Af(x). The equality
sign pertains (if at all) to x=1. £{1)=1, and since f(A) < A for

A > 1, the equality sign can be dispensed with and the result is

proved.




APPENDIX B

We wish to evaluate the integral:
2rm/w 5t
I = J’ e’" Isin(Wt+ )| dt
0
We do not expect that the critical amplitude for onset will
depend strongly on the phase of the oscillations, and accordingly
set q>= 0. This is equivalent to assuming that m >> $/2m, and
we can be confident in our result so long as this condition

holds. The integral can be written as:

I = ) f e’ sinwt dt - f e’ sinat dt}

p=0 { o1 (p+1/2)T

The integral without the modulus can be evaluated to give:
Jebt sinedt dt = (Usin®t - cos 5t)e6t/w02

and we thus have:

m=1

&
g }: eMP (2K 1) ey (-ooSL + ek(p+172) (2K 1) w/w, }
p=0

H
1]

(«0/3,2) (e"¥M_1) coth k

where k =T 8/20.




APPENDIX C

We shall calculate the thermal time constant of the cell as
follows. This is closely based on Robinsonts paperus.

The equation we work from is Robinson's equation (6), a
cubic in the complex parameter A= iW=- .KR where ®is the
observed frequency: 2 = ubz - ¥2, Inour case, the values of
¥ for the growths and decays are only about 5% of the observed
frequency; the approximation = W is therefore very good.

Equating the imaginary part of Robinson's equation (6) to zero,

and discarding the solution <>=0, we obtain:
2 2
3% - 20L +80y° = 0 (c.1)

nge,B is a dimensionless parameter (equal to Robinson's ),
and depends on the temperature and the size of the reservoirs. L
is the thermal conductance (ergs s~ K"T) between the reservoirs,
divided by the thermal mass (ergs k=) of the liquid in one
reservoir. The reciprocal of L is thus the thermal relaxation
time between the reservoirs.

/9 may be determined as a function of temperature from
Robinson's figure 1, where it has been calculated for a reservoir
depth of 1 ecm. Rather than calculate how to scale 8 for the
cell geometry, we take this figure as a reasonable approximation
in the present situation. In the temperature range of interest,
A>> 1, and thus/94)02 >> 3%.2, We may therefore ignore the term
36k2 in equation (C.1) and write:

2 Bl = B (c.2)

Using the centre of gravity values of the temperature T and JR
from figure 5.20, and the mean value of (), for these flows, we

obtain for the thermal relaxation time 1/L = 4ms., This is




acceptably short, and is much smaller than the time-scales
observable in the experiment.

From Robinson's figure 1, we can calculate d&/dT in the
temperature range 1.1 to 1.2 K. The result is
dg/dT = 6.8 x 103k~1, Assuming L to be temperature independent
in this range, by differentiating equation (C.2) with respect to
temperature we obtain:

A wg° dB

dT 2L dT

= 1.45 s~ k-1 te.3)

A straight line with this gradient has been plotted through the
centre of gravity of the points in figure 5.20. It corresponds
with the trend in the experimental data, showing that thermal
damping adequately describes the variation of UR.

Hallock and Flintuz, and Campbell et al.uu have shown that
Robinson's analysis is also applicable to the case of two
connected reservoirs immersed in a liquid helium bath, provided
that the two reservoirs have the same volumes and thermal
conductances to the bath. The bath then just acts as an extra
thermal path between the reservoirs.

Satisfying as this agreement between theory and experiment
is, it should be pointed out that it is probably partly
fortuitous. Robinson's calculation of g is strictly only valid
for temperatures greater than 1.3K. Below this, the variation of
entropy with temperature differs from the form he assumed.
Together with the approximations already made, this leads one to
expect a greater disparity with the experimental results than is

actually observed.

3,
3
2
3
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APPENDIX D

FILE NAME  ~=me—e——— FILM.FOR
HELIUM FILM WITH VORTICES

aaoaaoaaaoa

DOUBLE PRECISION R,THETA,Y,RADTH,A,F,
DOUBLE PRECISION DR,DTHETA,SUM1,T,DT,
DOUBLE PRECISION RAO,RCO,DN,OMEGAO

INITIALISE THE PARAMETERS

aan

DATA DEG2R/0.0174532/LASTT/0.0/
DATA R/1.0/THETA/0.0/DTHETA/~-1.0/
DATA A/-0.1090/SUM1/0.0/
DATA T/0.0/OMEGA0/0.309/
DATA N/0.0/RC0/0.0/RA0/0.0/K/180/
c
C READ IN THE ADJUSTABLE PARAMETERS
c
WRITE(4,1013)
1013 FORMAT(' HOW MANY OSCILLATIONS ? ')
READ(4,1008) NOSC
1008 FORMAT(I3)
NOSC=NOSC+1
WRITE(4,1015)
1015 FORMAT(1H ,'TYPE IN VALUE OF RAQ - ')
READ(4,1003)RA0
1003 FORMAT(F10.0)
WRITE(4,1016)
1016 FORMAT(1H ,'TYPE IN VALUE OF RCO - ')
READ(4,1003)RCO
c
C PRINT OUT THE PARAMETERS
c
WRITE(4,1011)A,DTHETA, RAO,RCO
1011 FORMAT(' A =',G15.4,' DTHETA =',G15.
#' RAO =',G15.4,' RCO =',G15.4/)

WRITE(%,1020)
1020 FORMAT(! LOG(R) LOG(N)
* TIME TIME DIFF.')
c
C START OF MAIN LOOP
c

1 RADTH=THETA*DEG2R
Y=R¥DSIN(RADTH)
F=Y#A%¥(1-N)

C NUMERATOR OF dR/JTHETA
NUMR=F *Y
F=F*DCOS(RADTH)

C DENOMINATOR OF dR/dATHETA
DENOM=R+F

C TEST FOR COLLAPSE OF OSCILLATIONS
IF(R.LE.0.0.OR.DENOM.LE.0.0)GOTO 3000
J=IDINT(THETA)
J=MOD(J,360)

THIS PROGRAM SOLVES TWO SIMULTANEOUS DIFFERENTIAL
EQUATIONS IN N AND R BY THE METHOD OF ANALYTIC CONTINUATION

NUMR, DENOM
LASTT,DEG2R, N

4/




C IF WE ARE ON THE X-AXIS, PRINT CUT THE RESULTS
IF (MOD(J,K) .EQ.0)CALL OUTPUT(J,R,N,T,LASTT)
C IF THETA IS O, PRINT OUT THE FRACTIONAL CHANGE IN PERIOD
IF(J.NE.O)GOTO 4
SUM1=SUM1/360.0+1.0
WRITE(4,1012) SUM1
1012 FORMAT(' FRACTIONAL PERIOD CHANGE = ',1PD15.7)
SUM1=0.0
NOSC=NOSC-1
C STOP IF NOSC OSCILLATIONS COMPLETED
IF(NOSC.EQ.0)STOP 2002
4 SUM1=SUM1+F*DTHETA/DENOM
C CALCULATE CHANGES IN R, T AND N
DR=DTHETA*DEG2R*NUMR/DENOM
DT=(-R*¥DEG2R*DTHETA) / (DENOM*OMEGAQ)
DN=0.,0
IF(DABS(Y).GT.1.0)DN=RCO
DN=(DN~-RAO*N¥*N) *DT
C CALCULATE NEW VALUES OF R, T AND N
R=R+DR
T=T4+DT
N=N+DN
IF(N,LT.0.0)N=0.0
THETA=THETA+DTHETA

GOTO 1
C
C END OF MAIN LOOP
c

C PRINT A MESSAGE IF THE OSCILLATIONS HAVE COLLAPSED
3000 WRITE(4,1001)
1001 FORMAT(' R OR DENOMINATOR BECOMES NEGATIVE AT:')
WRITE(4,1000)J,R,N,T,LASTT
1000 FORMAT(I5,1PD15.3,1PD15.3,1PD15.3,1PD15.3)
STOP 2001
END
c
C OUTPUT SUBROUTINE. CALCULATES THE TIME DIFFERENCES BETWEEN CALLS TO IT
G
SUBROUTINE OUTPUT(J,R,N,T,LASTT)
DOUBLE PRECISION R,N,T,LASTT,NN
REAL A1,A2,A3,A4
NN=N
IF(N.LE.0)NN=1.0E-20
C CALCULATE LLOG OF R AND N
A1=DLOG10(R)
A2=DLOG10(NN)
A3=T
AU=T-LASTT
LASTT=T
WRITE(4,1000)A1,A2,A3,A4
1000 FORMAT(4(1PE15.3))
RETURN
END



Sample Output:

HOW MANY OSCILLATIONS ? 3
TYPE IN VALUE OF RAO -~ 0.1
TYPE IN VALUE OF RCO -~ 1.0

A= -,.1090 DTHETA = -1.0000
RAQ = . 1000 RCO = 1.0000
LOG(R) LOG(N) TIME TIME DIFF.
-6.027E-18 -2 .000E+01 0.000E+00 0.000E+00
FRACTIONAL PERIOD CHANGE =  0.0000000D+00 3
~ 1.215E=02 2.690E-02 9.926E+00 9.926E+00
FRACTIONAL PERIOD CHANGE = 1.7272510D-02
5.133E~03 -1.704E-01 3.016E+01 1,017E+01
~-3.219E=03 1.199E-02 4,018E+01 1.003E+01 7
FRACTIONAL PERIOD CHANGE = 6,.8077875D~03 3
-3.837E~03 -6 .354E-02 5.030E+01 1.011E+01 -
-3.831E~03 -4 84TE-02 6.039E+01 1.009E+01

FRACTIONAL PERIOD CHANGE =  6.5241939D-03
STOP 2002 b




APPENDIX E
We can relate £ to Ah in the critical regime as follows.
From figure 5.3, we see that:
£ =4nh = (tq -ty h
Recalling that @2 Ah = x AVy and AV = Ugty, we obtain:

&

h (1 - flwoz/u‘}o) - tz}:l

Adh - B

This result is based purely on geometrical considerations in
figure 5.3. The value of t, (as defined in figure 5.3) was
measured to be 1.0 + 0.5 s for all runs at Vd = 0.31vs™1, Using
the estimate of </ 6002 from figure 5.2, the values of A and B
are:
A = 0.74 £ 0.05
B

1]

4.9 + 1.0 um.

A and B vary depending on h. The figures quoted are base;i on
the mean and standard deviation of h at ‘}0 = 0.31 Vs"1, and
they show that the changes due to h are small. If AandB are
regarded as constant, then a graph of £ against Ah should be a
straight line, figure 5.4. It yields values for A and B which
are in close agreement with the calculated values. This
agreement merely serves to confirm that the values of \"ro, AV and-
4h are self-consistent, and does not in itself provide any

information on the dissipation in the film.
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