34 research outputs found

    Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options

    Get PDF
    The goal of this review was to analyze published data related to mitigation of enteric methane (CH4) emissions from ruminant animals to document the most effective and sustainable strategies. Increasing forage digestibility and digestible forage intake was one of the major recommended CH4 mitigation practices. Although responses vary, CH4 emissions can be reduced when corn silage replaces grass silage in the diet. Feeding legume silages could also lower CH4 emissions compared to grass silage due to their lower fiber concentration. Dietary lipids can be effective in reducing CH4 emissions, but their applicability will depend on effects on feed intake, fiber digestibility, production, and milk composition. Inclusion of concentrate feeds in the diet of ruminants will likely decrease CH4 emission intensity (Ei; CH4 per unit animal product), particularly when inclusion is above 40% of dietary dry matter and rumen function is not impaired. Supplementation of diets containing medium to poor quality forages with small amounts of concentrate feed will typically decrease CH4 Ei. Nitrates show promise as CH4 mitigation agents, but more studies are needed to fully understand their impact on whole-farm greenhouse gas emissions, animal productivity, and animal health. Through their effect on feed efficiency and rumen stoichiometry, ionophores are likely to have a moderate CH4 mitigating effect in ruminants fed high-grain or mixed grain–forage diets. Tannins may also reduce CH4 emissions although in some situations intake and milk production may be compromised. Some direct-fed microbials, such as yeast-based products, might have a moderate CH4–mitigating effect through increasing animal productivity and feed efficiency, but the effect is likely to be inconsistent. Vaccines against rumen archaea may offer mitigation opportunities in the future although the extent of CH4 reduction is likely to be small and adaptation by ruminal microbes and persistence of the effect is unknown. Overall, improving forage quality and the overall efficiency of dietary nutrient use is an effective way of decreasing CH4 Ei. Several feed supplements have a potential to reduce CH4 emission from ruminants although their long-term effect has not been well established and some are toxic or may not be economically feasible

    Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options

    Get PDF
    The goal of this review was to analyze published data on animal management practices that mitigate enteric methane (CH4) and nitrous oxide (N2O) emissions from animal operations. Increasing animal productivity can be a very effective strategy for reducing greenhouse gas (GHG) emissions per unit of livestock product. Improving the genetic potential of animals through planned cross-breeding or selection within breeds and achieving this genetic potential through proper nutrition and improvements in reproductive efficiency, animal health, and reproductive lifespan are effective approaches for improving animal productivity and reducing GHG emission intensity. In subsistence production systems, reduction of herd size would increase feed availability and productivity of individual animals and the total herd, thus lowering CH4 emission intensity. In these systems, improving the nutritive value of low-quality feeds for ruminant diets can have a considerable benefit on herd productivity while keeping the herd CH4 output constant or even decreasing it. Residual feed intake may be a tool for screening animals that are low CH4 emitters, but there is currently insufficient evidence that low residual feed intake animals have a lower CH4 yield per unit of feed intake or animal product. Reducing age at slaughter of finished cattle and the number of days that animals are on feed in the feedlot can significantly reduce GHG emissions in beef and other meat animal production systems. Improved animal health and reduced mortality and morbidity are expected to increase herd productivity and reduce GHG emission intensity in all livestock production systems. Pursuing a suite of intensive and extensive reproductive management technologies provides a significant opportunity to reduce GHG emissions. Recommended approaches will differ by region and species but should target increasing conception rates in dairy, beef, and buffalo, increasing fecundity in swine and small ruminants, and reducing embryo wastage in all species. Interactions among individual components of livestock production systems are complex but must be considered when recommending GHG mitigation practices

    Prediction of the nutritive value of whole crop wheat

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN008298 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Bacterial inoculants for improving silage quality and animal performance

    Full text link
    Presented at 2020 Virtual Cornell Nutrition ConferenceThis talk will discuss the different types of bacterial inoculants used for silage preservation, their modes of action, effects, and prerequisites for efficacy as well as effects on animal performance.Department of Animal Scienc

    Effect of microbial inoculants on the quality and aerobic stability of bermudagrass round-bale haylage

    No full text
    The objective of this study was to compare the efficacy of using 4 commercially available microbial inoculants to improve the fermentation and aerobic stability of bermudagrass haylage. We hypothesized that the microbial inoculants would increase the fermentation and aerobic stability of the haylages. Bermudagrass (4-wk regrowth) was harvested and treated with (1) deionized water (control); (2) Buchneri 500 (B500; Lallemand Animal Nutrition, Milwaukee, WI) containing 1 × 105 of Pediococcus pentosaceus and 4 × 105 ofLactobacillus buchneri 40788; (3) Biotal Plus II (BPII; Lallemand Animal Nutrition) containing 1.2 × 105 of P. pentosaceus and Propionibacteria freudenreichii; (4) Silage Inoculant II (SI; AgriKing Inc., Fulton, IL) containing 1 × 105 of Lactobacillus plantarum and P. pentosaceus; and (5) Silo King (SK; AgriKing Inc.), containing 1 × 105 of L. plantarum, Enterococcus faecium, and P. pentosaceus, respectively. Forty round bales (8 per treatment; 441 ± 26 kg; 1.2 × 1.2 m diameter) were made and each was wrapped with 7 layers of plastic. Twenty bales were stored for 112 d and the remaining 20 were stored for 30 d and sampled by coring after intermediary storage periods of 0, 3, 7, and 30 d. The pH of control and inoculated haylages sampled on d 3 did not differ. However, B500 and BPII had lower pH (5.77 ± 0.04 vs. 6.16 ± 0.04; 5.06 ± 0.13 vs. 5.52 ± 0.13) than other treatments by d 7 and 30, respectively. At final bale opening on d 112, all treatments had lower pH than the control haylage (4.77 ± 0.07 vs. 5.37 ± 0.07). The B500, BPII, and SI haylages had greater lactic acid and lactic-to-acetic acid ratios than SK and control haylages. No differences were detected in neutral detergent fiber digestibility, dry matter losses, dry matter, lactic and acetic acid concentrations, and yeast and coliform counts. The SK haylage had lower clostridia counts compared with the control (1.19 ± 0.23 vs. 1.99 ± 0.23 cfu/g). Treatments B500, BPII, SI, and SK tended to reduce mold counts and they improved aerobic stability by 236, 197, 188, and 95%, respectively, compared with the control (276 ± 22 vs. 99 ± 22 h)
    corecore