22 research outputs found

    Anti-hepatocellular carcinoma activity using human HepG2 cells and hepatotoxicity of 6-substituted methyl 3-aminothieno[3,2-b]pyridine-2-carboxylate derivatives: in vitro evaluation, cell cycle analysis and QSAR studies

    Get PDF
    Hepatocellular carcinoma (HCC) is a highly complex cancer, resistant to commonly used treatments and new therapeutic agents are urgently needed. A total of thirty-two thieno[3,2-b]pyridine derivatives of two series: methyl 3-amino-6-(hetero)arylthieno[3,2-b]pyridine-2-carboxylates (1a-1t) and methyl 3-amino-6-[(hetero)arylethynyl]thieno[3,2-b]pyridine-2-carboxylates (2a-2n), previously prepared by some of us, were evaluated as new potential anti-HCC agents by studying their in vitro cell growth inhibition on human HepG2 cells and hepatotoxicity using a porcine liver primary cell culture (PLP1). The presence of amino groups linked to a benzene moiety emerges as the key element for the anti-HCC activity. The methyl 3-amino-6-[(3-aminophenyl)ethynyl]thieno[3,2-b]pyridine-2-carboxylate (2f) is the most potent compound presenting GI50 values on HepG2 cells of 1.2 ÎĽM compared to 2.9 ÎĽM of the positive control ellipticine, with no observed hepatotoxicity (PLP1 GI50>125 ÎĽM against 3.3 ÎĽM of ellipticine). Moreover this compound changes the cell cycle profile of the HepG2 cells, causing a decrease in the % of cells in the S phase and a cell cycle arrest in the G2/M phase. QSAR studies were also performed and the correlations obtained using molecular and 1D descriptors revealed the importance of the presence of amino groups and hydrogen bond donors for anti-HCC activity, and hydrogen bond acceptors for hepatotoxicity. The best correlations were obtained with 3D descriptors belonging to different subcategories for anti-HCC activity and hepatotoxicity, respectively. These results point to different molecular mechanisms of action of the compounds in anti-HCC activity and hepatotoxicity. This work presents some promising thieno[3,2-b]pyridine derivatives for potential use in the therapy of HCC. These compounds can also be used as scaffolds for further synthesis of more potent analogues.FCT, FEDER/COMPETE/QREN/E

    Hidden heterochromatin: Characterization in the Rodentia species Cricetus cricetus, Peromyscus eremicus (Cricetidae) and Praomys tullbergi (Muridae)

    Get PDF
    The use of in situ restriction endonuclease (RE) (which cleaves DNA at specific sequences) digestion has proven to be a useful technique in improving the dissection of constitutive heterochromatin (CH), and in the understanding of the CH evolution in different genomes. In the present work we describe in detail the CH of the three Rodentia species, Cricetus cricetus, Peromyscus eremicus (family Cricetidae) and Praomys tullbergi (family Muridae) using a panel of seven REs followed by C-banding. Comparison of the amount, distribution and molecular nature of C-positive heterochromatin revealed molecular heterogeneity in the heterochromatin of the three species. The large number of subclasses of CH identified in Praomys tullbergi chromosomes indicated that the karyotype of this species is the more derived when compared with the other two genomes analyzed, probably originated by a great number of complex chromosomal rearrangements. The high level of sequence heterogeneity identified in the CH of the three genomes suggests the coexistence of different satellite DNA families, or variants of these families in these genomes

    Are ribosomal DNA clusters rearrangement hotspots? A case study in the genus Mus (Rodentia, Muridae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent advances in comparative genomics have considerably improved our knowledge of the evolution of mammalian karyotype architecture. One of the breakthroughs was the preferential localization of evolutionary breakpoints in regions enriched in repetitive sequences (segmental duplications, telomeres and centromeres). In this context, we investigated the contribution of ribosomal genes to genome reshuffling since they are generally located in pericentromeric or subtelomeric regions, and form repeat clusters on different chromosomes. The target model was the genus <it>Mus </it>which exhibits a high rate of karyotypic change, a large fraction of which involves centromeres.</p> <p>Results</p> <p>The chromosomal distribution of rDNA clusters was determined by <it>in situ </it>hybridization of mouse probes in 19 species. Using a molecular-based reference tree, the phylogenetic distribution of clusters within the genus was reconstructed, and the temporal association between rDNA clusters, breakpoints and centromeres was tested by maximum likelihood analyses. Our results highlighted the following features of rDNA cluster dynamics in the genus <it>Mus</it>: i) rDNA clusters showed extensive diversity in number between species and an almost exclusive pericentromeric location, ii) a strong association between rDNA sites and centromeres was retrieved which may be related to their shared constraint of concerted evolution, iii) 24% of the observed breakpoints mapped near an rDNA cluster, and iv) a substantial rate of rDNA cluster change (insertion, deletion) also occurred in the absence of chromosomal rearrangements.</p> <p>Conclusions</p> <p>This study on the dynamics of rDNA clusters within the genus <it>Mus </it>has revealed a strong evolutionary relationship between rDNA clusters and centromeres. Both of these genomic structures coincide with breakpoints in the genus <it>Mus</it>, suggesting that the accumulation of a large number of repeats in the centromeric region may contribute to the high level of chromosome repatterning observed in this group. However, the elevated rate of rDNA change observed in the chromosomally invariant clade indicates that the presence of these sequences is insufficient to lead to genome instability. In agreement with recent studies, these results suggest that additional factors such as modifications of the epigenetic state of DNA may be required to trigger evolutionary plasticity.</p

    Supplementary Material for: Cytogenetic Assessment of the Rat Cell Line CLS-ACI-1: An in vitro Cell Model for Mycn Overexpression

    No full text
    <br>Breast cancer is a complex and heterogeneous disease, and the establishment of cell models in order to properly study the disease at the molecular and cellular level is of utmost importance. Here, we present the cytogenetic characterization and gene expression analysis of the tumoral mammary rat cell line CLS-ACI-1. The use of banding and molecular cytogenetic techniques allowed the description of the complex CLS-ACI-1 karyotype and the identification of breakpoints in clonal chromosome rearrangements. Moreover, a <i>Mycn</i> and <i>Erbb2</i> comparative expression analysis by RT-qPCR was performed, revealing a high expression level of <i>Mycn</i> in CLS-ACI-1 cells. Moreover, a considerable number of putative mutated genes and chromosome alterations detected through cytogenetic analysis seem to be in the MYCN biological network. Therefore, the CLS-ACI-1 cell line is presented as a promising cell model for the study of the role of MYCN in breast cancer and also as a tool for developing appropriate cancer therapies, namely for <i>Mycn</i> targeting

    Conservation, divergence and functions of centromeric satellite DNA families in the Bovidae.

    Get PDF
    Repetitive satellite DNA (satDNA) sequences are abundant in eukaryote genomes, with a structural and functional role in centromeric function. We analysed the nucleotide sequence and chromosomal location of the five known cattle (Bos taurus) satDNA families in seven species from the tribe Tragelaphini (Bovinae subfamily). One of the families (SAT1.723) was present at the chromosomes' centromeres of the Tragelaphini species, as well in two more distantly related bovid species, Ovis aries and Capra hircus. Analysis of the interaction of SAT1.723 with centromeric proteins revealed that this satDNA sequence is involved in the centromeric activity in all the species analysed and that it is preserved for at least 15-20 My across Bovidae species. The satDNA sequence similarity among the analysed species reflected different stages of homogeneity/heterogeneity, revealing the evolutionary history of each satDNA family. The SAT1.723 monomer-flanking regions showed the presence of transposable elements, explaining the extensive shuffling of this satDNA between different genomic regions

    Chromosomal evolution in Rattini (Muridae, Rodentia)

    No full text
    The Rattini (Muridae, Murinae) includes the biologically important model species Rattus norvegicus (RNO) and represents a group of rodents that are of clinical, agricultural and epidemiological importance. We present a comparative molecular cytogenetic investigation of ten Rattini species representative of the genera Maxomys, Leopoldamys, Niviventer, Berylmys, Bandicota and Rattus using chromosome banding, cross-species painting (Zoo-fluorescent in situ hybridization or FISH) and BAC-FISH mapping. Our results show that these taxa are characterised by slow to moderate rates of chromosome evolution that contrasts with the extensive chromosome restructuring identified in most other murid rodents, particularly the mouse lineage. This extends to genomic features such as NOR location (for example, NORs on RNO 3 are present on the corresponding chromosomes in all species except Bandicota savilei and Niviventer fulvescens, and the NORs on RNO 10 are conserved in all Rattini with the exception of Rattus). The satellite I DNA family detected and characterised herein appears to be taxon (Rattus) specific, and of recent origin (consistent with a feedback model of satellite evolution). BAC-mapping using clones that span regions responsible for the morphological variability exhibited by RNO 1, 12 and 13 (acrocentric/submetacentric) and their orthologues in Rattus species, demonstrated that the differences are most likely due to pericentric inversions as exemplified by data on Rattus tanezumi. Chromosomal characters detected using R. norvegicus and Maxomys surifer whole chromosome painting probes were mapped to a consensus sequence-based phylogenetic tree thus allowing an objective assessment of ancestral states for the reconstruction of the putative Rattini ancestral karyotype. This is thought to have comprised 46 chromosomes that, with the exception of a single pair of metacentric autosomes, were acrocentric in morphology. © 2011 Springer Science+Business Media B.V.Article in Pres

    Supplementary Material for: A High-Resolution Comparative Chromosome Map of Cricetus cricetus and Peromyscus eremicus Reveals the Involvement of Constitutive Heterochromatin in Breakpoint Regions

    No full text
    <p>Compared to humans and other mammals, rodent genomes, specifically Muroidea species, underwent intense chromosome reshuffling in which many complex structural rearrangements occurred. This fact makes them preferential animal models for studying the process of karyotype evolution. Here, we present the first combined chromosome comparative maps between 2 Cricetidae species, <i>Cricetus cricetus</i> and <i>Peromyscus eremicus</i>, and the index species <i>Mus musculus</i> and <i>Rattus norvegicus</i>. Comparative chromosome painting was done using mouse and rat paint probes together with in silico analysis from the Ensembl genome browser database. Hereby, evolutionary events (inter- and intrachromosomal rearrangements) that occurred in <i>C. cricetus</i> and <i>P. eremicus</i> since the putative ancestral Muroidea genome could be inferred, and evolutionary breakpoint regions could be detected. A colocalization of constitutive heterochromatin and evolutionary breakpoint regions in each genome was observed. Our results suggest the involvement of constitutive heterochromatin in karyotype restructuring of these species, despite the different levels of conservation of the <i>C. cricetus</i> (derivative) and <i>P. eremicus</i> (conserved) genomes.</p

    Bovine satellite DNAs – a history of the evolution of complexity and its impact in the Bovidae family

    No full text
    Despite the many questions regarding satellite DNA sequences and their cellular roles, the evolutionary history of eukaryotic genomes seems to have been largely influenced by this dynamic and multifaceted genomic component. The bovine genome is highly rich in diverse satDNA sequences that differ in monomer sequence and length, complexity, chromosomal location and abundance, as well as in their sequences’ evolutionary mechanisms. In the evolution of the Bovidae family, the genomes’ repetitive fraction played a central role in karyotype reorganisation, and in the last few decades several studies have demonstrated and reinforced an association between centromeric satDNAs and the process of chromosome evolution in remodelling genomes of Bovidae species. Here, we review different aspects of the molecular nature and genome behaviour of all the satDNA families identified in the bovine genome, including their organisation, abundance, chromosome localisation, variation in sequence, and evolutionary history in the Bovidae family and in particular in the Bovinae subfamily, taking an integrative perspective. “Evolution and satDNA” can be addressed through two complementary views: the satDNA sequence evolution per se, and genome evolution promoted by the satDNA dynamism. SatDNA both provides phylogenetic information and is a critical genomic component that enables sequence and chromosome evolution – features arising from its presence, absence or alteration

    Bovine satellite DNAs–a history of the evolution of complexity and its impact in the Bovidae family

    No full text
    Despite the many questions regarding satellite DNA sequences and their cellular roles, the evolutionary history of eukaryotic genomes seems to have been largely influenced by this dynamic and multifaceted genomic component. The bovine genome is highly rich in diverse satDNA sequences that differ in monomer sequence and length, complexity, chromosomal location and abundance, as well as in their sequences’ evolutionary mechanisms. In the evolution of the Bovidae family, the genomes’ repetitive fraction played a central role in karyotype reorganisation, and in the last few decades several studies have demonstrated and reinforced an association between centromeric satDNAs and the process of chromosome evolution in remodelling genomes of Bovidae species. Here, we review different aspects of the molecular nature and genome behaviour of all the satDNA families identified in the bovine genome, including their organisation, abundance, chromosome localisation, variation in sequence, and evolutionary history in the Bovidae family and in particular in the Bovinae subfamily, taking an integrative perspective. “Evolution and satDNA” can be addressed through two complementary views: the satDNA sequence evolution per se, and genome evolution promoted by the satDNA dynamism. SatDNA both provides phylogenetic information and is a critical genomic component that enables sequence and chromosome evolution–features arising from its presence, absence or alteration
    corecore