6 research outputs found

    Detection of Crimean-Congo Hemorrhagic Fever Virus Antibodies in Cattle in Plateau State, Nigeria

    Get PDF
    Crimean-Congo hemorrhagic fever (CCHF) is a vector-borne viral hemorrhagic disease with global clinical significance. Certain species of ticks are vectors of CCHF, which can be transmitted from animals to humans and humans to humans by direct exposure to blood or other body fluids. The zoonotic transmission at the human–animal interface from viremic animal hosts to humans is a public health concern with a paucity of data in Nigeria. Samples from 184 pastoral cattle from three local government areas (LGAs) of Plateau state, Nigeria, were screened for CCHF virus using a commercial enzyme-linked immunosorbent assay (ID Screen® CCHF Double Antigen for Multi-Species). Overall seropositivity of 30.4% (n = 56) (95% CI: 23.88%, 37.63%) was recorded from the study areas in Plateau State, while 48/126 (38.1%, 95% CI: 29.59%, 47.17%) sampled cows tested positive for CCHFV antibodies. Seropositivity was significantly higher (p < 0.001) among older cattle greater than two years, 54.69% (95% CI: 2.88%, 11.24%) compared to cattle younger than two years, 17.5% (95% CI: 11.17%, 25.50%). The location of farms played a significant role in the seropositivity of CCHF with the least risk observed in Wase LGA. CCHF is an important zoonotic disease in different parts of the globe with a high risk of transmission to pastoralists, livestock keepers/slaughterhouse workers, and veterinarians who handle animals. There is a need for a collaborative one-health approach with various stakeholders to unravel the dynamics of CCHFV epidemiology in Nigeria

    Financial impact of sheeppox and goatpox and estimated profitability of vaccination for subsistence farmers in selected northern states of Nigeria

    Get PDF
    Sheeppox and goatpox (SGP) are important transboundary diseases, endemic in Nigeria, causing severe clinical manifestations, impacting production, and resulting in economic losses. Vaccination is an effective control measure against SGP in endemic countries but is not currently implemented in Nigeria. This study aimed to estimate SGP financial impact and assess economic viability of SGP vaccination at the herd and regional level under different scenarios in Northern Nigeria. Integrated stochastic production and economic herd models were developed for transhumance and sedentary herds. Models were run for two disease scenarios (severely and slightly affected) and with and without vaccination, with data parameterisation from literature estimates, field survey and authors’ experience. Herd-level net financial impact of the disease and its vaccination was assessed using gross margin (GM) and partial budget analyses. These were then used to assess regional financial impact of disease and profitability of a 3-year vaccination programme using a cost-benefit analysis. The regional-analysis was performed under 0 %, 50 % and 100 % government subsidy scenarios; as a standalone programme or in combination with other existing vaccination programmes; and for risk-based and non-risk-based intervention. Median SGP losses per reproductive female were £27 (90 % CI: £31-£22), and £5 (90 % CI: £7-£3), in sedentary, and £30 (90 % CI: £41-21), and £7 (90 % CI: £10-£3), in transhumance herds, for severely and slightly affected scenarios respectively. Selling animals at a reduced price, selling fewer young animals, and reduced value of affected animals remaining in the herd were the greatest contributors to farmer’s SGP costs. SGP-affected herds realised a GM reduction of up to 121 % in sedentary and 138 % in transhumance. Median estimated regional SGP cost exceeded £24 million. Herd-level median benefits of vaccination per reproductive female were £23.76 (90 % CI: £19.28-£28.61), and £4.01 (90 % CI: £2.36-£6.31), in sedentary, and £26.85 (90 % CI: £17.99-£37.02) and £7.45 (90 % CI: £3.47-£15.14) in transhumance herds, in severely and slightly affected scenarios, respectively. Median benefit: cost ratio (BCR) for severely affected herds at 50% subsidies was 6.62 (90% CI: 5.30-8.90) for sedentary, and 5.14 (90% CI: 3.31-13.81) for transhumance herds. The regional SGP vaccination standalone programme BCR: 7–27, regional SGP vaccination with existing vaccination programme BCR: 7–228 and vaccinating high-risk areas BCR: 19–439 were found to be economically viable for all subsidy levels explored. Vaccinating low-risk areas only realised benefits with 100 % of government subsidies. This study further increases understanding of SGP’s impact within Northern Nigeria and demonstrates vaccination is an economically viable control strategy at the herd-level and also regionally, depending on the strategy and government subsidy levels considered

    Mapping inequalities in exclusive breastfeeding in low- and middle-income countries, 2000–2018

    Get PDF
    Exclusive breastfeeding (EBF)—giving infants only breast-milk for the first 6 months of life—is a component of optimal breastfeeding practices effective in preventing child morbidity and mortality. EBF practices are known to vary by population and comparable subnational estimates of prevalence and progress across low- and middle-income countries (LMICs) are required for planning policy and interventions. Here we present a geospatial analysis of EBF prevalence estimates from 2000 to 2018 across 94 LMICs mapped to policy-relevant administrative units (for example, districts), quantify subnational inequalities and their changes over time, and estimate probabilities of meeting the World Health Organization’s Global Nutrition Target (WHO GNT) of ≥70% EBF prevalence by 2030. While six LMICs are projected to meet the WHO GNT of ≥70% EBF prevalence at a national scale, only three are predicted to meet the target in all their district-level units by 2030

    Detection of Crimean-Congo Hemorrhagic Fever Virus Antibodies in Cattle in Plateau State, Nigeria

    Get PDF
    Crimean-Congo hemorrhagic fever (CCHF) is a vector-borne viral hemorrhagic disease with global clinical significance. Certain species of ticks are vectors of CCHF, which can be transmitted from animals to humans and humans to humans by direct exposure to blood or other body fluids. The zoonotic transmission at the human&ndash;animal interface from viremic animal hosts to humans is a public health concern with a paucity of data in Nigeria. Samples from 184 pastoral cattle from three local government areas (LGAs) of Plateau state, Nigeria, were screened for CCHF virus using a commercial enzyme-linked immunosorbent assay (ID Screen&reg; CCHF Double Antigen for Multi-Species). Overall seropositivity of 30.4% (n = 56) (95% CI: 23.88%, 37.63%) was recorded from the study areas in Plateau State, while 48/126 (38.1%, 95% CI: 29.59%, 47.17%) sampled cows tested positive for CCHFV antibodies. Seropositivity was significantly higher (p &lt; 0.001) among older cattle greater than two years, 54.69% (95% CI: 2.88%, 11.24%) compared to cattle younger than two years, 17.5% (95% CI: 11.17%, 25.50%). The location of farms played a significant role in the seropositivity of CCHF with the least risk observed in Wase LGA. CCHF is an important zoonotic disease in different parts of the globe with a high risk of transmission to pastoralists, livestock keepers/slaughterhouse workers, and veterinarians who handle animals. There is a need for a collaborative one-health approach with various stakeholders to unravel the dynamics of CCHFV epidemiology in Nigeria

    Characterization of a Novel African Swine Fever Virus p72 Genotype II from Nigeria

    No full text
    African swine fever (ASF) is a high-consequence transboundary hemorrhagic fever of swine. It continues to spread across the globe causing socio-economic issues and threatening food security and biodiversity. In 2020, Nigeria reported a major ASF outbreak, killing close to half a million pigs. Based on the partial sequences of the genes B646L (p72) and E183L (p54), the virus responsible for the outbreak was identified as an African swine fever virus (ASFV) p72 genotype II. Here, we report further characterization of ASFV RV502, one of the isolates obtained during the outbreak. The whole genome sequence of this virus revealed a deletion of 6535 bp between the nucleotide positions 11,760–18,295 of the genome, and an apparent reverse complement duplication of the 5′ end of the genome at the 3′ end. Phylogenetically, ASFV RV502 clustered together with ASFV MAL/19/Karonga and ASFV Tanzania/Rukwa/2017/1 suggesting that the virus responsible for the 2020 outbreak in Nigeria has a South-eastern African origin
    corecore