257 research outputs found

    Constant Approximation for kk-Median and kk-Means with Outliers via Iterative Rounding

    Full text link
    In this paper, we present a new iterative rounding framework for many clustering problems. Using this, we obtain an (α1+ϵ7.081+ϵ)(\alpha_1 + \epsilon \leq 7.081 + \epsilon)-approximation algorithm for kk-median with outliers, greatly improving upon the large implicit constant approximation ratio of Chen [Chen, SODA 2018]. For kk-means with outliers, we give an (α2+ϵ53.002+ϵ)(\alpha_2+\epsilon \leq 53.002 + \epsilon)-approximation, which is the first O(1)O(1)-approximation for this problem. The iterative algorithm framework is very versatile; we show how it can be used to give α1\alpha_1- and (α1+ϵ)(\alpha_1 + \epsilon)-approximation algorithms for matroid and knapsack median problems respectively, improving upon the previous best approximations ratios of 88 [Swamy, ACM Trans. Algorithms] and 17.4617.46 [Byrka et al, ESA 2015]. The natural LP relaxation for the kk-median/kk-means with outliers problem has an unbounded integrality gap. In spite of this negative result, our iterative rounding framework shows that we can round an LP solution to an almost-integral solution of small cost, in which we have at most two fractionally open facilities. Thus, the LP integrality gap arises due to the gap between almost-integral and fully-integral solutions. Then, using a pre-processing procedure, we show how to convert an almost-integral solution to a fully-integral solution losing only a constant-factor in the approximation ratio. By further using a sparsification technique, the additive factor loss incurred by the conversion can be reduced to any ϵ>0\epsilon > 0

    Tensorial Constitutive Models for Disordered Foams, Dense Emulsions, and other Soft Nonergodic Materials

    Full text link
    In recent years, the paradigm of `soft glassy matter' has been used to describe diverse nonergodic materials exhibiting strong local disorder and slow mesoscopic rearrangement. As so far formulated, however, the resulting `soft glassy rheology' (SGR) model treats the shear stress in isolation, effectively `scalarizing' the stress and strain rate tensors. Here we offer generalizations of the SGR model that combine its nontrivial aging and yield properties with a tensorial structure that can be specifically adapted, for example, to the description of fluid film assemblies or disordered foams.Comment: 18 pages, 4 figure

    Impact of earthworm activity on the chemical fertility of irrigated soil with urban effluents

    Get PDF
    The reuse of urban effluents to irrigate the soils of peri-urban grasslands in the vicinity of the town of Setif (northeastern Algeria) is an old and widespread practice. In this context, the present study was conducted to evaluate the effect of the irrigation with urban effluents on the biological and chemical behavior of soils. Effluents analysis showed significant organic and particulate pollution, the latter contributed to earthworm abundance and increased the richness of irrigated soils with nutrients. The analysis of turricules revealed the role of earthworms through the activity of bioturbation in the increase of the rate of organic matter as well as in the bioavailability of the nutrients of the irrigated soils. In space, permanent vegetation cover has played an important role as a biofilter. This was confirmed by the inter-site differences recorded through the measured variables particularly organic ones.Keywords: Natural grasslands, urban effluents, earthworm activity, turricles, organic matte

    Non-Equilibrium in Adsorbed Polymer Layers

    Full text link
    High molecular weight polymer solutions have a powerful tendency to deposit adsorbed layers when exposed to even mildly attractive surfaces. The equilibrium properties of these dense interfacial layers have been extensively studied theoretically. A large body of experimental evidence, however, indicates that non-equilibrium effects are dominant whenever monomer-surface sticking energies are somewhat larger than kT, a common case. Polymer relaxation kinetics within the layer are then severely retarded, leading to non-equilibrium layers whose structure and dynamics depend on adsorption kinetics and layer ageing. Here we review experimental and theoretical work exploring these non-equilibrium effects, with emphasis on recent developments. The discussion addresses the structure and dynamics in non-equilibrium polymer layers adsorbed from dilute polymer solutions and from polymer melts and more concentrated solutions. Two distinct classes of behaviour arise, depending on whether physisorption or chemisorption is involved. A given adsorbed chain belonging to the layer has a certain fraction of its monomers bound to the surface, f, and the remainder belonging to loops making bulk excursions. A natural classification scheme for layers adsorbed from solution is the distribution of single chain f values, P(f), which may hold the key to quantifying the degree of irreversibility in adsorbed polymer layers. Here we calculate P(f) for equilibrium layers; we find its form is very different to the theoretical P(f) for non-equilibrium layers which are predicted to have infinitely many statistical classes of chain. Experimental measurements of P(f) are compared to these theoretical predictions.Comment: 29 pages, Submitted to J. Phys.: Condens. Matte

    Plastic Response of a 2D Lennard-Jones amorphous solid: Detailed analysis of the local rearrangements at very slow strain-rate

    Full text link
    We analyze in details the atomistic response of a model amorphous material submitted to plastic shear in the athermal, quasistatic limit. After a linear stress-strain behavior, the system undergoes a noisy plastic flow. We show that the plastic flow is spatially heterogeneous. Two kinds of plastic events occur in the system: quadrupolar localized rearrangements, and shear bands. The analysis of the individual motion of a particle shows also two regimes: a hyper-diffusive regime followed by a diffusive regime, even at zero temperature

    Aqueous foams in microgravity, measuring bubble sizes

    Get PDF
    The paper describes a study of wet foams in microgravity whose bubble size distribution evolves due to diffusive gas exchange. We focus on the comparison between the size of bubbles determined from images of the foam surface and the size of bubbles in the bulk foam, determined from Diffuse Transmission Spectroscopy (DTS). Extracting the bubble size distribution from images of a foam surface is difficult so we have used three different procedures : manual analysis, automatic analysis with a customized Python script and machine learning analysis. Once various pitfalls were identified and taken into account, all the three procedures yield identical results within error bars. DTS only allows the determination of an average bubble radius which is proportional to the photon transport mean free path \ell^*. The relation between the measured diffuse transmitted light intensity and {\ell^*} previously derived for slab-shaped samples of infinite lateral extent does not apply to the cuboid geometry of the cells used in the microgravity experiment. A new more general expression of the diffuse intensity transmitted with specific optical boundary conditions has been derived and applied to determine the average bubble radius. The temporal evolution of the average bubble radii deduced from DTS and of the same average radii of the bubbles measured at the sample surface are in very good agreement throughout the coarsening. Finally, ground experiments were performed to compare bubble size distributions in a bulk wet foam and at its surface at times so short that diffusive gas exchange is insignificant. They were found to be similar, confirming that bubbles seen at the surface are representative of the bulk foam bubbles

    Soft Dynamics simulation: 2. Elastic spheres undergoing a T1 process in a viscous fluid

    Get PDF
    Robust empirical constitutive laws for granular materials in air or in a viscous fluid have been expressed in terms of timescales based on the dynamics of a single particle. However, some behaviours such as viscosity bifurcation or shear localization, observed also in foams, emulsions, and block copolymer cubic phases, seem to involve other micro-timescales which may be related to the dynamics of local particle reorganizations. In the present work, we consider a T1 process as an example of a rearrangement. Using the Soft dynamics simulation method introduced in the first paper of this series, we describe theoretically and numerically the motion of four elastic spheres in a viscous fluid. Hydrodynamic interactions are described at the level of lubrication (Poiseuille squeezing and Couette shear flow) and the elastic deflection of the particle surface is modeled as Hertzian. The duration of the simulated T1 process can vary substantially as a consequence of minute changes in the initial separations, consistently with predictions. For the first time, a collective behaviour is thus found to depend on another parameter than the typical volume fraction in particles.Comment: 11 pages - 5 figure
    corecore