4,820 research outputs found
Global Stability of a Premixed Reaction Zone (Time-Dependent Liñan’s Problem)
Global stability properties of a premixed, three-dimensional reaction zone are considered. In the nonadiabatic case (i.e., when there is a heat exchange between the reaction zone and the burned gases) there is a unique, spatially one-dimensional steady state that is shown to be unstable (respectively, asymptotically stable) if the reaction zone is cooled (respectively, heated) by the burned mixture. In the adiabatic case, there is a unique (up to spatial translations) steady state that is shown to be stable. In addition, the large-time asymptotic behavior of the solution is analyzed to obtain sufficient conditions on the initial data for stabilization. Previous partial numerical results on linear stability of one-dimensional reaction zones are thereby confirmed and extended
Empirical and process-based approaches to climate-induced forest mortality models
Globally, forests store ~45% of carbon sequestered terrestrially, contribute more to the terrestrial sink per area than any other land cover type, and assimilate an important portion of anthropogenic emissions. Forests exert strong biophysical control on climate via surface energy balance, and the hydrological cycle. Widespread forest mortality in response to drought, increased temperatures, and infestation of tree pests has been observed globally, potentially threatening forests' regulation of climate. This threat has prompted great interest in understanding and predicting tree mortality due to climate variability and change, especially drought. Initial tests of hydraulic failure (mortality caused by irreversible loss of xylem conductivity from air embolism), carbon starvation (mortality due to carbohydrate limitation), insect attacks, wildfire, and their interdependence, suggest proximal causes of mortality are likely complex, co-occurring, interrelated, and variable with tree species. While the interdependent roles of carbon and water in plant mortality are consistently observed, this work is continuously prompting new questions
Ptychographic hyperspectral spectromicroscopy with an extreme ultraviolet high harmonic comb
We demonstrate a new scheme of spectromicroscopy in the extreme ultraviolet
(EUV) spectral range, where the spectral response of the sample at different
wavelengths is imaged simultaneously. It is enabled by applying ptychographical
information multiplexing (PIM) to a tabletop EUV source based on high harmonic
generation, where four spectrally narrow harmonics near 30 nm form a spectral
comb structure. Extending PIM from previously demonstrated visible wavelengths
to the EUV/X-ray wavelengths promises much higher spatial resolution and more
powerful spectral contrast mechanism, making PIM an attractive
spectromicroscopy method in both the microscopy and the spectroscopy aspects.
Besides the sample, the multicolor EUV beam is also imaged in situ, making our
method a powerful beam characterization technique. No hardware is used to
separate or narrow down the wavelengths, leading to efficient use of the EUV
radiation
Low Mass Companions for Five Solar-Type Stars from the Magellan Planet Search Program
We report low mass companions orbiting five Solar-type stars that have
emerged from the Magellan precision Doppler velocity survey, with minimum
(Msini) masses ranging from 1.2 to 25 Mjup. These nearby target stars range
from mildly metal-poor to metal-rich, and appear to have low chromospheric
activity. The companions to the brightest two of these stars have previously
been reported from the CORALIE survey. Four of these companions (HD 48265-b, HD
143361-b, HD 28185-b, HD 111232-b) are low-mass Jupiter-like planets in
eccentric intermediate and long-period orbits. On the other hand, the companion
to HD 43848 appears to be a long period brown dwarf in a very eccentric orbit.Comment: Accepted for publication on ApJ, 26 pages, 10 figures, 7 table
Scintillation and charge extraction from the tracks of energetic electrons in superfluid helium-4
An energetic electron passing through liquid helium causes ionization along
its track. The ionized electrons quickly recombine with the resulting positive
ions, which leads to the production of prompt scintillation light. By applying
appropriate electric fields, some of the ionized electrons can be separated
from their parent ions. The fraction of the ionized electrons extracted in a
given applied field depends on the separation distance between the electrons
and the ions. We report the determination of the mean electron-ion separation
distance for charge pairs produced along the tracks of beta particles in
superfluid helium at 1.5 K by studying the quenching of the scintillation light
under applied electric fields. Knowledge of this mean separation parameter will
aid in the design of particle detectors that use superfluid helium as a target
material.Comment: 10 pages, 8 figure
Chemical Study of the Interstitial Water Dissolved Organic Matter and Gases in Lake Erie, Cleveland Harbor, and Hamilton Harbour Bottom Sediments - Composition and Fluxes to Overlying Waters
The research on which this report is based was financed in part by the U.S. Department
of the Interior, as authorized by the Water Research and Development Act of 1978
(P.L. 95-467).(print) iv, 167, [45] p. : ill., maps ; 29 cm.FINAL REPORT FOR OWRT GRANT A-O59-OHIOItem lacks publication date. Issue date supplied from hand-written year on coverIntroduction -- The Study Area -- Methods and Materials -- Results -- Discussion -- Conclusions -- Selected Bibliographic References -- Tables 1-32 -- Figures 1-36 -- Appendi
Quantitative Chemically-Specific Coherent Diffractive Imaging of Buried Interfaces using a Tabletop EUV Nanoscope
Characterizing buried layers and interfaces is critical for a host of
applications in nanoscience and nano-manufacturing. Here we demonstrate
non-invasive, non-destructive imaging of buried interfaces using a tabletop,
extreme ultraviolet (EUV), coherent diffractive imaging (CDI) nanoscope. Copper
nanostructures inlaid in SiO2 are coated with 100 nm of aluminum, which is
opaque to visible light and thick enough that neither optical microscopy nor
atomic force microscopy can image the buried interfaces. Short wavelength (29
nm) high harmonic light can penetrate the aluminum layer, yielding
high-contrast images of the buried structures. Moreover, differences in the
absolute reflectivity of the interfaces before and after coating reveal the
formation of interstitial diffusion and oxidation layers at the Al-Cu and
Al-SiO2 boundaries. Finally, we show that EUV CDI provides a unique capability
for quantitative, chemically-specific imaging of buried structures, and the
material evolution that occurs at these buried interfaces, compared with all
other approaches.Comment: 12 pages, 8 figure
A Century of Cosmology
In the century since Einstein's anno mirabilis of 1905, our concept of the
Universe has expanded from Kapteyn's flattened disk of stars only 10 kpc across
to an observed horizon about 30 Gpc across that is only a tiny fraction of an
immensely large inflated bubble. The expansion of our knowledge about the
Universe, both in the types of data and the sheer quantity of data, has been
just as dramatic. This talk will summarize this century of progress and our
current understanding of the cosmos.Comment: Talk presented at the "Relativistic Astrophysics and Cosmology -
Einstein's Legacy" meeting in Munich, Nov 2005. Proceedings will be published
in the Springer-Verlag "ESO Astrophysics Symposia" series. 10 pages Latex
with 2 figure
Book Reviews
If there is a living American qualified to prepare material for the student of future interests probably law teachers would agree that Professor Kales is the man. He has written a book on Future Estates in Illinois which has made a distinct impression on the law of that state and is recognized elsewhere as a sound and scholarly treatise. He has taught the course on future interests and illegal restraints at Northwestern University Law School for many years, and last year gave the same course at Harvard
- …