39,454 research outputs found

    MSFC evaluation of the space fabrication demonstration system (beam builder)

    Get PDF
    The beam builder, designed and manufactured as a ground demonstration model, is a precursor to a machine for use in the space environment, transportable by the space shuttle. The beam builder has the capability to automatically fabricate triangular truss beams in low Earth orbit with a highly reliable machine that requires a minimum of in-space maintenance and repair. A performance assessment of the beam builder, which was fabricated from commercial hardware is given

    Event-based personal retrieval

    Get PDF
    People who work in a research, academic or business environment often have personal information collections which are large enough to need retrieval aids. A major difference between personal information retrieval and normal document retrieval is that the items to be retrieved are often associated with events in the searcher's life and can be retrieved by their relationship to other events as well as by content. This paper describes some of the background to event-based retrieval and then describes a prototype graphical event-based retrieval system

    A New Instrument For Measuring Student Beliefs About Physics and Learning Physics: The Colorado Learning Attitudes About Science Survey

    Get PDF
    The Colorado Learning Attitudes about Science Survey (CLASS) is a new instrument designed to measure student beliefs about physics and about learning physics. This instrument extends previous work by probing additional aspects of student beliefs and by using wording suitable for students in a wide variety of physics courses. The CLASS has been validated using interviews, reliability studies, and extensive statistical analyses of responses from over 5000 students. In addition, a new methodology for determining useful and statistically robust categories of student beliefs has been developed. This paper serves as the foundation for an extensive study of how student beliefs impact and are impacted by their educational experiences. For example, this survey measures: that most teaching practices cause substantial drops in student scores; that a student's likelihood of becoming a physics major correlates with their 'Personal Interest' score; and that, for a majority of student populations, women's scores in some categories, including 'Personal Interest' and 'Real World Connections', are significantly different than men's scores

    The Design and Validation of the Colorado Learning Attitudes about Science Survey

    Get PDF
    The Colorado Learning Attitudes about Science Survey (CLASS) is a new instrument designed to measure various facets of student attitudes and beliefs about learning physics. This instrument extends previous work by probing additional facets of student attitudes and beliefs. It has been written to be suitably worded for students in a variety of different courses. This paper introduces the CLASS and its design and validation studies, which include analyzing results from over 2400 students, interviews and factor analyses. Methodology used to determine categories and how to analyze the robustness of categories for probing various facets of student learning are also described. This paper serves as the foundation for the results and conclusions from the analysis of our survey dat

    Correlating Student Beliefs With Student Learning Using The Colorado Learning Attitudes about Science Survey

    Get PDF
    A number of instruments have been designed to probe the variety of attitudes, beliefs, expectations, and epistemological frames taught in our introductory physics courses. Using a newly developed instrument -- the Colorado Learning Attitudes about Science Survey (CLASS)[1] -- we examine the relationship between students' beliefs about physics and other educational outcomes, such as conceptual learning and student retention. We report results from surveys of over 750 students in a variety of courses, including several courses modified to promote favorable beliefs about physics. We find positive correlations between particular student beliefs and conceptual learning gains, and between student retention and favorable beliefs in select categories. We also note the influence of teaching practices on student beliefs

    Towards characterizing the relationship between students' interest in and their beliefs about physics

    Get PDF
    We examine the relationships between students' self-reported interest and their responses to a physics beliefs survey. Results from the Colorado Learning Attitudes about Science Survey (CLASS v3), collected in a large calculusbased introductory mechanics course (N=391), were used to characterize students' beliefs about physics and learning physics at the beginning and end of the semester. Additionally students were asked at the end of the semester to rate their interest in physics, how it has changed, and why. We find a correlation between surveyed beliefs and self-rated interest (R=0.65). At the end of the term, students with more expert-like beliefs as measured by the 'Overall' CLASS score also rate themselves as more interested in physics. An analysis of students' reasons for why their interest changed showed that a sizable fraction of students cited reasons tied to beliefs about physics or learning physics as probed by the CLASS survey. The leading reason for increased interest was the connection between physics and the real world

    Testing for complete spatial randomness on three dimensional bounded convex shapes

    Get PDF
    There is currently a gap in theory for point patterns that lie on the surface of objects, with researchers focusing on patterns that lie in a Euclidean space, typically planar and spatial data. Methodology for planar and spatial data thus relies on Euclidean geometry and is therefore inappropriate for analysis of point patterns observed in non-Euclidean spaces. Recently, there has been extensions to the analysis of point patterns on a sphere, however, many other shapes are left unexplored. This is in part due to the challenge of defining the notion of stationarity for a point process existing on such a space due to the lack of rotational and translational isometries. Here, we construct functional summary statistics for Poisson processes defined on convex shapes in three dimensions. Using the Mapping Theorem, a Poisson process can be transformed from any convex shape to a Poisson process on the unit sphere which has rotational symmetries that allow for functional summary statistics to be constructed. We present the first and second order properties of such summary statistics and demonstrate how they can be used to construct a test statistics to determine whether an observed pattern exhibits complete spatial randomness or spatial preference on the original convex space. We compare this test statistic with one constructed from an analogue L-function for inhomogeneous point processes on the sphere. A study of the Type I and II errors of our test statistics are explored through simulations on ellipsoids of varying dimensions
    • ā€¦
    corecore