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There is currently a gap in theory for point patterns that lie
on the surface of objects, with researchers focusing on patterns
that lie in a Euclidean space, typically planar and spatial data.
Methodology for planar and spatial data thus relies on Euclidean
geometry and is therefore inappropriate for analysis of point
patterns observed in non-Euclidean spaces. Recently, there has
been extensions to the analysis of point patterns on a sphere,
however, many other shapes are left unexplored. This is in
part due to the challenge of defining the notion of stationarity
for a point process existing on such a space due to the lack
of rotational and translational isometries. Here, we construct
functional summary statistics for Poisson processes defined on
convex shapes in three dimensions. Using the Mapping Theorem,
a Poisson process can be transformed from any convex shape
to a Poisson process on the unit sphere which has rotational
symmetries that allow for functional summary statistics to be
constructed. We present the first and second order properties
of such summary statistics and demonstrate how they can be
used to construct a test statistics to determine whether an
observed pattern exhibits complete spatial randomness or spatial
preference on the original convex space. We compare this test
statistic with one constructed from an analogue L-function for
inhomogeneous point processes on the sphere. A study of the

✩ This document is the results of the research project funded by Wellcome Trust under the grant 203799/Z/16/Z.
∗ Corresponding author.

E-mail addresses: scott.ward12@imperial.ac.uk (S. Ward), e.cohen@imperial.ac.uk (E.A.K. Cohen),
.adams@imperial.ac.uk (N. Adams).
ttps://doi.org/10.1016/j.spasta.2020.100489
211-6753/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.spasta.2020.100489
http://www.elsevier.com/locate/spasta
http://www.elsevier.com/locate/spasta
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spasta.2020.100489&domain=pdf
mailto:scott.ward12@imperial.ac.uk
mailto:e.cohen@imperial.ac.uk
mailto:n.adams@imperial.ac.uk
https://doi.org/10.1016/j.spasta.2020.100489
http://creativecommons.org/licenses/by/4.0/


S. Ward, E.A.K. Cohen and N. Adams Spatial Statistics 41 (2021) 100489

m
d
R
h
d

a
m
o
c
2
c

f
c
a
d

Type I and II errors of our test statistics are explored through
simulations on ellipsoids of varying dimensions.

© 2021 The Authors. Published by Elsevier B.V. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Research in spatial statistics has predominantly concentrated on the development of theory and
ethodology for point processes on Rd, with a significant focus on planar (R2) and spatial (R3)
ata. Point processes existing on non-Euclidean spaces, however, are still relatively under-explored.
ecently, with the advent of spatial data on a global scale, and modelling Earth as a sphere, there
ave been important developments in the theory and analysis of point processes on the surface of
−1 dimensional unit spheres, Sd−1

⊂ Rd (Lawrence et al., 2016; Møller and Rubak, 2016; Robeson
et al., 2014). Yet patterns can still arise for which these methodologies are inappropriate as they lie
on other bounded metric spaces that deviate significantly from Sd−1. For example, microbiologists
re concerned with the spatial arrangement of lipids and proteins on the cellular membranes of
icroorganisms that are not adequately modelled by spheres. In the case of bacteria, ellipsoids
r capsules (a cylinder with two hemispherical caps placed at each end) are far more appropriate
andidate surfaces. Recent advances in 3D super-resolution imaging techniques (e.g. Cabriel et al.,
019; Gustavsson et al., 2018) output point patterns of this type, and there is a demand for the
orrect statistical procedures to analyse them.
Key to the statistical analysis of spatial data is the ability to form functional summary statistics

rom an observed pattern, primarily for performing exploratory data analysis and testing for
omplete spatial randomness (CSR). On Rd and Sd−1, there exists an infinite number of isometries,
llowing for the notions of stationarity and isotropy to be well defined, which in turn allows for well
efined functional summary statistics. However, on the surface of an arbitrary convex shape D ⊂ R3,

the set of available isometries is finite, and thus defining stationarity, isotropy, and summary
statistics directly on D is non-trivial. Building on the current literature for spherical point patterns,
in particular the discussion of inhomogeneous point processes on a sphere by both Lawrence et al.
(2016) and Møller and Rubak (2016), we show that it is possible to construct functional summary
statistics for point processes on the surface of arbitrary convex shapes in R3, with our primary
interest being to test for CSR.

Our approach is to map the point pattern from an arbitrary convex shape D onto S2. For any
Poisson process on D, the Mapping Theorem (Kingman, 1993) determines that the mapped process
on S2 remains Poisson with the intensity function dependent on the mapping. By working on S2, we
operate on a space that is more amenable to constructing summary statistics. These then allow us to
test for CSR on D. The functional summary statistics we develop are based on the inhomogeneous
counterparts of typical functional summary statistics already established in the spatial statistics
literature. In particular, we focus on the inhomogeneous K -function, first discussed by Baddeley
et al. (2000) for Rd and later extended to Sd−1 by Lawrence et al. (2016) and Møller and Rubak
(2016). Furthermore, we also construct the empty-space function, F , spherical contact distribution,
H , and J-function (the ratio of the H- and F-functions) for point processes on arbitrary convex shapes
by extending the inhomogeneous definitions of van Lieshout (2011) from Rd to S2.

Section 2 introduces the notation used throughout this work and formally states the hypothesis
for testing CSR on an arbitrary convex shape. Section 3 discusses functional summary statistics on
S2, key for the construction of summary statistics on more general bounded subsets of R3, and
the impracticalities of attempting to define functional summary statistics directly on D. Section 4
extends the inhomogeneous F-, H-, and J-functions from Rd (van Lieshout, 2011) to S2. Section 5
describes the construction of functional summary statistics on bounded subsets of R3 for Poisson
processes, discussing their first and second order properties in the event that the intensity function
is known. Section 6 provides two worked examples constructing functional summary statistics for
2
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realisations of a Poisson process observed on a cube and an ellipsoid. Section 7 discusses how regular
and cluster processes can be detected based on the deviations of the empirical functional summary
statistics. Section 8 describes estimation procedures for the functional summary statistics when
the intensity function is unknown and we propose two test statistics for CSR. Finally in Section 9
we conduct empirical power tests using Monte Carlo simulations to explore the properties of our
proposed test statistics.

2. Preliminaries

In this section we outline the necessary spatial theory and notation used throughout this work.
e start by introducing the notion of a bounded convex space in R3 and then define what it means

or a point process to lie on such a surface. We end with the statement of the problem that this
ork is primarily focused on.

.1. Notation

Let x ∈ R3 such that x = (x1, x2, x3)T and define ∥x∥ = (x21 +x22 +x23)
1/2 to be the Euclidean norm

with the origin of R3 denoted as 0 = (0, 0, 0)T . Denote a subset of R3 as D = {x ∈ R3
: g(x) = 0},

where g : R3
↦→ R. We also suppose that D is compact (i.e. closed and bounded) and call g the

level-set function of D. Define the set Dint = {x ∈ R3
: g(x) < 0}, i.e. the boundary of Dint is

D and we refer to Dint as the interior of D. The set Dint is said to be convex if and only if for all
x, y ∈ Dint such that x ̸= y then {z ∈ R3

: z = x + γ (y − x), γ ∈ (0, 1)} ∈ Dint . We thus define
D to be convex if its interior, Dint , is convex. Examples of bounded convex sets of R3 are spheres,
ellipsoids, and cubes. Further for any bounded convex set D with level-set function g , we will also
define g̃ which rearranges g(x) = 0, such that x3 = g̃(x1, x2), i.e. we write x3 as a function of x1
and x2. It may not always be possible to find g̃ explicitly since, as defined previously, it may be
the case that the resultant g̃ is not a proper function. This issue can be rectified by partitioning D
appropriately. For example take the case of a sphere with radius 1, then g(x) = x21+x22+x23−1, hence
g̃(x1, x2) = ±(1 − x21 − x22)

1/2, which is not a proper function. In this case we partition the region
D into the regions x3 ≥ 0 and x3 < 0. Then for x3 ≥ 0, we define g̃(x1, x2) = +(1 − x21 − x22)

1/2

and x3 < 0, g̃(x1, x2) = −(1 − x21 − x22)
1/2. For any bounded convex sets, D, we also define its

geodesic as the shortest path between two points x, y ∈ D such that every point in the path is also
an element of D and denote the geodesic distance by d : D×D ↦→ R+, where R+ is the positive real
line including 0, thus (D, d(·, ·)) is a metric space. Additionally, we will frequently need to evaluate
integrals over D, which can be done using its infinitesimal area element defined as,

dD =

√
1 +

(
∂ g̃
∂x1

)2

+

(
∂ g̃
∂x2

)2

dx1dx2.

e assume that these convex subsets of R3 are defined such that the origin is inside D, that is
∈ Dint , we then say the space D is centred. Our methodology can easily be adapted for non-centred
paces by making the appropriate translations to bring the origin inside D.
Following the notation of Møller and Waagepetersen (2004), we define λD(x) as the Lebesgue

easure restricted to the surface of the convex shape D. Consider point processes which lie on
some bounded convex metric space (D, d(·, ·)). We define the notation AK = A ∩ K , A, K ⊆ D.
This nomenclature is often used when the set A has finite cardinality and K is any subset of D. The
cardinality of a set is denoted by |·|. Further define BD(x, r) = {y ∈ D, d(x, y) ≤ r} and the set
Nlf = {A ⊂ D : |AK | < ∞, K ⊆ D} where K is any subset of D. In other words, Nlf is the set of
subsets of D that have finite cardinality. To distinguish between points in a point process X and
any point in the space D, we shall refer to elements of our point process x ∈ X as events whilst
retaining the term point for any point in D. We consider point processes which are locally finite and
simple. A point process, X , lying on D is said to be locally finite, if for any bounded set K ⊆ D, the
number of events of X in K is finite almost surely, i.e. X ∈ Nlf almost surely. A simple point process
is one in which no coincident events exist almost surely, in other words if x , x ∈ X such that i ̸= j
i j

3
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then xi ̸= xj. We also define the counting measure of X as NX (K ) = |X ∩ K | = |XK |. We denote
he reduced Palm distribution of the point process X by PX !

x
and define X !

x to be the point process
ollowing this density, referring to this as the reduced Palm process (Møller and Waagepetersen,
004). For a point process X on D we define the intensity measure as the expected number of events
f X for any K ⊆ D, i.e. µ(K ) = E[NX (K )], whilst the intensity function ρ(x) for all x ∈ D, if it exists,
s given by,

µ(K ) =

∫
K

ρ(x)λD(dx),

here ρ(x)λD(dx) can be interpreted heuristically as the probability of an event of X being in the
nfinitesimal area λD(dx).

We also define, for n ∈ N, α(n)(K1, . . . , Kn) = E
∑̸=

x1,...,xn∈X 1[x1 ∈ K1, . . . , xn ∈ Kn] as the
th-order factorial moment measures where the summation is taken over pairwise distinct sets of
x1, . . . , xn}. Further we shall assume there exists ρ(n)(x1, . . . , xn) such that,

α(n)(K1, . . . , Kn) =

∫
K1

· · ·

∫
Kn

ρ(n)(x1, . . . , xn)λD(dx1) · · · λD(dxn), (1)

here K1, . . . , Kn ⊆ D. We can interpret ρ(x1, . . . , xn)(n)λD(dx1) · · · λD(dxn) as the probability that
vents of X lie jointly in the infinitesimal areas λD(dxi), i = 1, . . . , n and call ρ(n) the nth-order
actorial moment density. Notice that α(1)

= µ, and ρ(1)
= ρ. The pair correlation function is defined

s,

h(x, y) =
ρ(2)(x, y)
ρ(x)ρ(y)

,

where it is taken that division by 0 results in the pair correlation function equalling 0.
A useful alternative to the nth order product intensities are the nth order correlation functions (van

ieshout, 2011). They are recursively defined for n ∈ N, based on product densities, with ξ1 = 1
nd

ρ(n)(x1, . . . , xn)
ρ(x1) · · · ρ(xn)

=

n∑
k=1

∑
D1,...,Dk

ξ|D1|(xD1 ) · · · ξ|Dk|(xDk ),

here the final sum ranges over all partitions {D1, . . . ,Dk} of {1, . . . , n} in k non-empty, disjoint
ets, xDj = {xi : i ∈ Dj}, j = 1, . . . , k, and xi ∈ S2 (van Lieshout, 2011). Further, we define the
enerating functional (Møller and Waagepetersen, 2004) of a point process X as

GX (u) = E
∏
x∈X

u(x),

or a function u : D ↦→ [0, 1], which are also useful when discussing the F-, H-, and J-functions in
ection 4.
We define a Poisson process on D identically to one on R2. Let X be a point process on D such

hat NX (D) ∼ Poisson(µ(D)) where,

µ(B) =

∫
B
ρ(x)λD(dx), for B ⊆ D,

here µ(D) < ∞. Then given NX (D) = n, xi ∈ X, i = 1, . . . , n are independent and identically
distributed across D with density proportional to ρ(x). We say that X is a Poisson process on D
ith intensity function ρ : D ↦→ R+. When ρ ∈ R+ is constant we say the process is homogeneous
oisson or CSR.

.2. Statement of the problem

We are now in a position to formally state the hypothesis of CSR we are interested in and for

hich this work provides an approach to testing.

4
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Let X be a spatial point process, such that g(X) = 0 where g(X) is a notational convenience
for g(x) = 0, for all x ∈ X and g is the level set for the convex shape D. From a realisation
of X we wish to conduct the following hypothesis test,

H0 : X is CSR on D vs. H1 : X is not CSR on D.

3. Summary statistics on S2 and the impracticalities of defining functional summary statistics
on general convex shapes

To analyse point patterns on a convex shape D, we will be required to map the point pattern
onto the unit sphere S2; we use the term spheroidal point process to denote a point process that
resides on S2. Hence it is necessary to discuss functional summary statistics in this space. We also
explain why it is non trivial to construct analogous functional summary statistics directly on D,
motivating a need for new methodology in order to test patterns which arise on such surfaces.

3.1. Summary statistics on S2

Mentioned in passing by Ripley (1977), spherical point patterns only garnered interest over the
past five years (Lawrence et al., 2016; Møller and Rubak, 2016; Robeson et al., 2014). Robeson et al.
(2014) show that, on a sphere of radius R, the spherical K -function for a homogeneous Poisson
process is K (r) = 2πR2(1−cos (r/R)), where r is the geodesic distance from an arbitrary event of the
process. Building on this, both Lawrence et al. (2016) and Møller and Rubak (2016) define a range of
typical functional summary statistics for isotropic (rotationally invariant) point processes, including
the empty-space and nearest-neighbour distributions. They also extend the K -function to the class
of inhomogeneous point processes that have rotationally invariant pair correlation functions. This
is analogous to the inhomogeneous extension given by Baddeley et al. (2000) for point processes
on Rd.

The geodesic on S2 is commonly referred to as the great circle distance and for two points
x, y ∈ S2 has analytic form d(x, y) = cos−1(x · y), where x · y is the dot product between vectors
x, y ∈ S2. We define a point process X on S2 to be isotropic if its distribution is invariant under
rotations, i.e. X d

= OX , for all O ∈ O(3), where O(3) is the set of orthogonal 3 × 3 matrices (Møller
nd Rubak, 2016). Here we use d

= to denote equal in distribution. Such an isotropic process has
onstant intensity function ρ ∈ R+.
Functional summary statistics are frequently employed for both exploratory data analysis and

odel fitting, playing a pivotal role in the early stages of any in depth investigation of an observed
oint pattern. In the homogeneous case, let X be an isotropic spheroidal point process with constant

intensity function ρ ∈ R+ then the F-, H-, J-, and K -functions are defined as,

F (r) = P(XB(o,r) ̸= ∅) (2)

H(r) = P(X !

o,B(o,r) ̸= ∅) (3)

J(r) =
1 − H(r)
1 − F (r)

(4)

K (r) =
1
ρ
E
∑
x∈X !

o

1[d(x, o) ≤ r], (5)

here r ∈ [0, π] and o = (0, 0, 1)T is defined as the origin of S2. Estimators of these functional
ummary statistics can be used to determine whether the underlying process of an observed point
attern follows a specific distribution. In particular, they can be used to test whether a pattern
rises from a CSR process or whether the underlying process exhibits regularity or clustering. A
reatment of the standard isotropic functional summary statistics on S2 is given in Lawrence et al.
(2016) and Møller and Rubak (2016).

It will be necessary for us to consider the inhomogeneous extensions of these functional
summary statistics as they will form the foundation for our functional summary statistics for point
5
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process on convex bounded shapes in R3. We begin by reviewing the inhomogeneous K -function,
riginally attributed to Baddeley et al. (2000) for a class of inhomogeneous point processes in Rd,

and then extended to non-isotropic point processes on S2 by Lawrence et al. (2016) and Møller
and Rubak (2016). In Section 4, we will construct the inhomogeneous F-, H-, and J-functions for
non-isotropic point processes on S2. This builds on the formulation of van Lieshout (2011) for
non-stationary point processes in Rd.

3.2. Inhomogeneous K-function

For the extension of the K -function to inhomogeneous processes on R2,3, Baddeley et al. (2000)
introduce the notion of a point process being second order intensity reweighted stationary (SOIRWS).
Here we focus on the extension for S2 where Lawrence et al. (2016) and Møller and Rubak (2016)
define the notion of second order intensity reweighted isotropic (SOIRWI). A point process X on S2

is said to be SOIRWI if its pair correlation function, h, is rotationally invariant, that is h(x, y) =

h(d(x, y)), where d is the great circle distance on S2. Lawrence et al. (2016) and Møller and Rubak
(2016) define the inhomogeneous K -function for a SOIRWI process as,

Kinhom(r) =
1

λS2 (A)
E
∑̸=

x,y∈X

1[x ∈ A,Ox(y) ∈ BS2 (o, r)]
ρ(x)ρ(y)

, 0 ≤ r ≤ π,

here Ox : S2
↦→ S2 is a rotation that takes x to o. Here, Kinhom is independent of the choice of

⊆ S2 with λS2 (A) > 0, and by convention a/0 = 0, for a ≥ 0. For a Poisson process it is easy to
how that Kinhom(r) = 2π (1−cos(r)). Therefore the K -function is the same for all Poisson processes
egardless of whether the intensity function is constant or not (Møller and Rubak, 2016).

Both Lawrence et al. (2016) and Møller and Rubak (2016) propose the following estimator for
inhom for a fully observed point pattern on S2,

K̂inhom(r) =
1
4π

∑̸=

x,y∈X

1[d(x, y) ≤ r]
ρ(x)ρ(y)

, (6)

hich is unbiased if ρ is known. In the more likely event that ρ is unknown, Lawrence et al. (2016)
nd Møller and Rubak (2016) suggest using a plugin estimator for ρ(x)ρ(y).

.3. Impracticalities of defining functional summary statistics directly on D

We now explain the subtle reasoning as to why constructing functional summary statistics
irectly on D is not a trivial extension from S2. The definitions given by Eqs. (2)–(5) are well defined
hen considering stationary or isotropic point processes on Rd or S2 respectively. This is because the
ymmetries of the space admit well defined notions of stationarity/isotropy based on translations
nd rotations. Since an arbitrary convex space D does not, in general, have isometries these notions
f stationarity/isotropy cannot be well defined. Therefore, defining functional summary statistics
nalogous to (2)–(5) is not possible.
Further, we also argue that we cannot define a point process to be SOIRWI on D. On S2 being

OIRWI is equivalent to having a rotationally invariant pair correlation function. We may be tempted
o equivalently define a point process to be SOIRWI on D if it has an invariant form for its pair
orrelation function. In particular this would make sense for a Poisson process on D as it would
ave pair correlation function, h(x) = 1 for all x ∈ D. Closer inspection though leads us to conclude
hat this is not an appropriate definition for SOIRWI on D. Based on Møller and Waagepetersen
2004, Definition 4.5, p. 32) we can take a point process X with intensity function ρ : S2

↦→ R+ as
eing SOIRWI on S2 if the measure,

K(B) =
1

λS2 (A)
E
∑̸= 1[x ∈ A,Ox(y) ∈ B]

ρ(x)ρ(y)
, B ⊆ S2, (7)
x,y∈X

6
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does not depend on the choice of A ⊆ S2 for 0 < |A| < ∞, where we take a/0 = 0. K is then called
he second order reduced moment measure. If the pair correlation function exists and is invariant
under rotations, then by the Campbell–Mecke Theorem (Møller and Waagepetersen, 2004) it follows
that

K(B) =

∫
B
h(d(o, x))λS2 (dx), B ⊆ S2.

Thus on S2 a point process is SOIRWI if h is invariant under rotations. Eq. (7) implicitly depends
on rotations Ox(y). If we now consider a point process on D, we cannot construct the second order
reduced moment measure as, in general, we do not have an analogous isometry. This in turn means
that we cannot define SOIRWI directly on D based on an invariance of the pair correlation function.

Moreover, for a point process on S2, consider the more specific case when B = BS2 (o, r), r > 0
in (7). This is identically the inhomogeneous K -function. The indicator function of (7) is still well-
defined in the case of S2 such that we are counting the events of X \ {x} that are at most a distance
r from x ∈ X . This same intuition could not equivalently be applied to point processes on a convex
shape as the ball of radius r from a point x on D also depends on x, i.e. BD(x, r) ⊂ D is different for
ach x ∈ D. Thus it is not possible to directly define an inhomogeneous K -function on D.

. Extending the inhomogeneous F -, H-, and J-functions to S2

On Rd, in the stationary case, it can be shown that the F-, and H-functions have infinite series
epresentations (White, 1979), and further work by van Lieshout (2006) also gives an infinite series
epresentation for the J-function based on the nth-order correlation functions. Theorem 1 gives an
nfinite series representation when the nth-order reduced factorial moment measure of all n exists,
imilar to (White, 1979) but where the underlying space is S2.

heorem 1. Let X be an isotropic spheroidal point process with constant intensity function ρ. Further
e assume the existence of all nth-order factorial moment measures for both X and its reduced Palm
rocess, X !

x. Then the F- and H-functions have the following series representation,

F (r) = −

∞∑
n=1

(−1)n

n!
α(n)(BS2 (o, r), . . . , BS2 (o, r))

H(r) = −

∞∑
n=1

(−1)n

n!
α!(n)
o (BS2 (o, r) . . . , BS2 (o, r))

where α(n) and α
!(n)
x are the factorial moment measure for X and X !

x and BS2 (o, r) is the spherical
cap of radius r at the origin o ∈ S2. These representations hold provided the series is absolutely
convergent, that is if limn→∞ |an+1/an| < 1 or lim supn→∞(|an|)1/n < 1, where an = ((−1)n/n!)
(n)(BS2 (o, r), . . . , BS2 (o, r)) for the F-function or an = ((−1)n/n!) α

!(n)
o (BS2 (o, r) . . . , BS2 (o, r)) for the

-function.

roof. See Theorem 1, Section S1 of the Supplementary Material. □

The following corollary reduces the representations for the F-, and H-function for when the
th-order product density exist. These representations are those used by van Lieshout (2011).

orollary 1 (White, 1979). Under the same assumptions as Theorem 1, let X be an isotropic spheroidal
oint process with constant intensity function ρ. Further we assume the existence of all nth-order product
ntensities for both X and its reduced Palm process, X !

x. Then the F- and H-functions have the following
eries representation,

F (r) = −

∞∑ (−1)n

n!

∫
· · ·

∫
ρ(n)(x1, . . . , xn)λS2 (dx1) · · · λS2 (dxn)
n=1 BS2 (o,r) BS2 (o,r)

7
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H(r) = −

∞∑
n=1

(−1)n

n!

∫
BS2 (o,r)

· · ·

∫
BS2 (o,r)

ρ(n+1)(o, x1, . . . , xn)
ρ

λS2 (dx1) · · · λS2 (dxn)

rovided the series is absolutely convergent, where BS2 (o, r) is the spherical cap of radius r at the origin
∈ S2.

roof. See Corollary 1, Section S1 of the Supplementary Material. □

Adapting the work of van Lieshout (2011), the J-function for an isotropic spheroidal point
rocess, based on the series for the F-, and H-function given by Theorem 1, has the following infinite
eries representation

J(r) = 1 +

∞∑
n=1

(−ρ)n

n!
Jn(r), 0 ≤ r ≤ π,

where Jn(r) =
∫
BS2 (o,r) · · ·

∫
BS2 (o,r) ξ

(n+1)(o, x1, . . . , xn)λS2 (dx1) · · · λS2 (dxn), and BS2 (o, r) is the spher-
cal cap at the origin o ∈ S2.

In order to define the inhomogeneous F-, H-, and J-function we first define the notion of iterative
eweighted moment isotropic (IRWMI) for a class of non-isotropic spheroidal point processes, similar
o the notion of iterative reweighted moment stationary in R2,3 (van Lieshout, 2011).

efinition 1. A spheroidal point process X is said to be IRWMI if, for all n ∈ N, the nth-order
orrelation functions are rotationally invariant. That is ξn(x1, . . . , xn) = ξn(Ox1, . . . ,Oxn) for all
∈ N and O ∈ O(3).

Identically to the inhomogeneous J-function in R2,3 (van Lieshout, 2011), we define the inhomo-
eneous J-function on S2.

efinition 2. For an IRWMI point process X with intensity function ρ : S2
↦→ R+ such that

¯ ≡ infx∈S2 ρ(x) > 0,

Jinhom(r) = 1 +

∞∑
n=1

(−ρ̄)n

n!
Jn(t), 0 ≤ r ≤ π

here Jn(r) =
∫
BS2 (o,r) · · ·

∫
BS2 (o,r) ξn+1(o, x1, . . . , xn)λS2 (dx1) · · · λS2 (dxn) and the series is absolutely

onvergent.

Notice that since the point process is IRWMI then the J-function does not depend on the origin
, and furthermore when the point process is isotropic Jinhom collapses down to J since the intensity

function is constant. In the context of Rd, van Lieshout (2011) shows that the inhomogeneous J-
function can be written as the ratio of generating functionals of the point process. Here we easily
adapt the theorem for IRWMI point processes on S2.

Theorem. For all r ∈ [0, π] and y ∈ S2,

uy
r (x) =

ρ̄1[Oy(x) ∈ BS2 (o, r)]
ρ(x)

, x ∈ S2,

where Oy : S2
↦→ S2 is a rotation that maps y to o. Assuming that the series

∑
∞

n=1
ρ̄n

n!

∫
BS2 (o,r) · · ·∫

BS2 (o,r)
ρ(n)(x1,...,xn)
ρ(x1)···ρ(xn)

λS2 (dx1) · · · λS2 (dxn) is absolutely convergent. Then under the further assumptions

associated with the inhomogeneous J-function and the existence of all nth-order intensity function ρ
!(n)
y

for the reduced Palm distribution X !
y, ∀y ∈ S2,

Jinhom(r) =
G!
y(1 − uy

r )

G(1 − uy
r )

, 0 ≤ r ≤ π,

or when G(1 − uy) > 0, where G! and G are the generating functionals for X ! and X respectively.
r y y

8
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Proof. See Theorem 1 of van Lieshout (2011). □

From the proof given by van Lieshout (2011), it can be shown that the numerator and denomina-
or do not depend on the arbitrary event or point y respectively. Further, in the case of an isotropic
oint process the numerator can be shown to be G!

y(1 − uy
r ) = 1 − H(r), whilst the denominator is

(1 − uy
r ) = 1 − F (r), and so the F-, and H-functions can be extended to the inhomogeneous case,

Finhom(r) = 1 − G(1 − uy
r )

Hinhom(r) = 1 − G!

y(1 − uy
r ),

here the functions do not depend on the arbitrary event y of the point process.
Similar to van Lieshout (2011) in R2,3, we propose the following estimators for the inhomoge-

eous F-, and H-functions for spheroidal IRWMI point processes as,

F̂inhom(r) = 1 −

∑
p∈P

∏
x∈X∩BS2 (p,r)

(
1 −

ρ̄

ρ(x)

)
|P|

(8)

Ĥinhom(r) = 1 −

∑
x∈X

∏
y∈(X\{x})∩BS2 (x,r)

(
1 −

ρ̄

ρ(y)

)
NX (S2)

, (9)

where P ⊆ S2 is a finite grid of points. The properties of the F̂inhom-function are independent of
the choice of P (van Lieshout, 2011). In this work we choose P such that the points on S2 are
equidistant. van Lieshout (2011) shows that F̂inhom(r) is unbiased whilst Ĥinhom(r) is ratio-unbiased.
hen since F̂inhom is unbiased and Ĥinhom is ratio-unbiased, constructing Ĵinhom as

Ĵinhom(r) =
1 − Ĥinhom(r)

1 − F̂inhom(r)
, (10)

gives a ratio-unbiased estimator for Jinhom(r).

5. Summary statistics for Poisson processes on convex shapes

Here, we construct summary statistics for Poisson processes on general convex shapes. We show
that a Poisson process on a general convex shape, D, can be mapped to a Poisson process on a
sphere, and then define functional summary statistics for such processes. We discuss properties of
these functional summary statistics in the more general setting of inhomogeneous Poisson processes
on S2.

5.1. Mapping from D to S2

To circumvent the geometrical restrictions of Dwe show, in this section, that we can map Poisson
processes from D to S2 and construct functional summary statistics in this space. Theorem 2 shows
that a Poisson process on D can be transformed to a Poisson process on a sphere where we can take
advantage of the rotational symmetries. The invariance of Poisson processes between metric spaces
is known as the Mapping Theorem (Kingman, 1993). We use the function f (x) = x/∥x∥ to map
point patterns from D to S2. Lemma 1 shows that this function is bijective and hence measurable.

Lemma 1. Let D be a convex subset of R3 such that the origin in R3 is in the interior of D, i.e. o ∈ Dint .
Then the function f (x) = x/∥x∥, f : D ↦→ S2 is bijective.

Proof. See Lemma 1, Section S2 of the Supplementary Material. □

Rather than using the Mapping Theorem (Kingman, 1993), we utilise Proposition 3.1 of Møller
and Waagepetersen (2004) to show that mapping a Poisson process from D to S2 results in a new
Poisson process on S2 and also derive the intensity function of the mapped process on S2.
9
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Theorem 2. Let X be a Poisson process on an arbitrary bounded convex shape D ⊂ R3 with intensity
unction ρ : D ↦→ R+. We assume that D = {x ∈ R3

: g(x) = 0} where g(x) = 0 is the level-set
function and is defined as,

g(x) =

⎧⎪⎪⎨⎪⎪⎩
g1(x) = 0, x ∈ D1

...

gn(x) = 0, x ∈ Dn

such that ∪
n
i=1Di = D and Di ∩ Dj = ∅, ∀i ̸= j. Let Y = f (X), where f (x) = x/∥x∥ with

(X) = {y ∈ S2
: y = x/∥x∥, x ∈ X}. Then Y is a Poisson process on S2, with intensity function,

ρ∗(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρ(f −1(x))l1(f −1(x))J(1,f ∗)(x)

√
1 − x21 − x22, x ∈ f (D1)

...

ρ(f −1(x))ln(f −1(x))J(n,f ∗)(x)
√
1 − x21 − x22, x ∈ f (Dn)

(11)

where,

x3 = g̃i(x1, x2)

li(x) =

[
1 +

(
∂ g̃i
∂x1

)2

+

(
∂ g̃i
∂x2

)2
] 1

2

J(i,f ∗−1)(x) =
1

(x21 + x22 + g̃2
i (x1, x2))3

det

⎡⎣⎛⎝x22 + g̃2
i (x1, x2) − x1g̃i(x1, x2)

∂ g̃i
∂x1

−x1
(
x2 + g̃i(x1, x2)

∂ g̃i
∂x2

)
−x2

(
x1 + g̃i(x1, x2)

∂ g̃i
∂x1

)
x21 + g̃2

i (x1, x2) − x2g̃i(x1, x2)
∂ g̃i
∂x2

⎞⎠⎤⎦
J(i,f ∗)(x) =

1
J(i,f ∗−1)(f −1(x))

,

here f −1 is the inverse of f , det(·) is the determinant operator, and f ∗
: R2

↦→ R2 is the function
which maps x1 ↦→ x1/∥x∥ and x2 ↦→ x2/∥x∥.

Proof. See Theorem 2, Section S2 of the Supplementary Material. □

To solidify the notation used to describe the space D in Theorem 1, we demonstrate it with a
clear example. Let us suppose that D is an ellipsoid with semi-major axis lengths a, b, and c along
the x, y and z - axes. Then we define D1 to be the D ∩ {x ∈ R3

: x = (x1, x2, x3)T and x3 ≥ 0}
i.e. the elements of D with non-negative x3 component. Similarly we define D2 = D ∩ {x ∈

R3
: x = (x1, x2, x3)T and x3 < 0}. Then using the notation outlined in Section 2.1 we take

g̃1(x) = +c
√
1 − (x1/a)2 − (x2/b)2 and g̃2(x) = −c

√
1 − (x1/a)2 − (x2/b)2.

emark 1. A notion of bijectivity arises from this theorem. Consider the set of all Poisson processes
n D such that their intensity functions exist, label this set TD. Also define TS2 as all the Poisson
rocesses on S2 such that their intensity functions exist. Then for any X ∈ TD implies that f (X) ∈ TS2 .

Similarly by considering the inverse operation f −1, which exists by Lemma 1, for all Y ∈ TS2 implies
hat f (Y ) ∈ TD. Hence the mapping f : TD ↦→ TS2 is surjective. By Theorem 2 if X, Y are Poisson
processes on D with intensity function ρX and ρY respectively then f (X) and f (Y ) are the same
Poisson process if and only if ρX = ρY and so the mapping is also injective, and hence bijective.
This means that analysis of a Poisson process, X , on D is equivalent to the analysis of f (X) on S2.
10
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Remark 2. Further, another useful result which follows directly from Theorem 2 is the construction
of approximate Poisson processes on S2. More precisely consider a convex surface D for which
nstead of having a level-set function, g , we have an approximation to the space, for example
onsider we have a finite piecewise planar approximation to D. Then D can be approximated by
n
i=1Di, where each Di is a planar piece and there are n ∈ N pieces to the approximation. For each
i the level-set function is gi(x) = aix1+bix2+cix3+di = 0, and we can then use this approximation

of D to map a Poisson process on D to S2.

5.2. Construction of functional summary statistics

We are now in a position to construct functional summary statistics for a Poisson process
which lies on some bounded convex space D. Since all Poisson processes on S2 are SOIRWI (Møller
and Rubak, 2016) and IRWMI (van Lieshout, 2011), the estimators for Finhom,Hinhom, Jinhom, and
Kinhom (see Eqs. (8)–(10) and (6) respectively) (van Lieshout, 2011; Møller and Rubak, 2016) can be
combined with the mapped intensity function from Theorem 2 to construct estimators as follows,

F̂inhom,D(r) = 1 −

∑
p∈P

∏
x∈Y∩BS2 (p,r)

(
1 −

ρ̄∗

ρ∗(x)

)
|P|

(12)

Ĥinhom,D(r) = 1 −

∑
x∈Y

∏
y∈(Y\{x})∩BS2 (x,r)

(
1 −

ρ̄∗

ρ∗(y)

)
NY (S2)

(13)

Ĵinhom,D(r) =
1 − Ĥinhom,D(r)

1 − F̂inhom,D(r)
(14)

K̂inhom,D(r) =
1
4π

∑̸=

x,y∈Y

1[d(x, y) ≤ r]
ρ∗(x)ρ∗(y)

, (15)

where X is a Poisson process on Dwith intensity function ρ, Y = f (X) is the mapped Poisson process
onto S2, ρ∗ is given by (11) and ρ̄∗ = infx∈S2 ρ∗(x). In the event that ρ : D ↦→ R+ is unknown and
therefore ρ∗ is unknown, nonparametric plug-in estimates of ρ∗ can be constructed on S2 (Lawrence
et al., 2016; Møller and Rubak, 2016).

5.3. Properties of functional summary statistics

Consider the general case of all Poisson processes on S2. Theorem 3 gives the expectations of
F̂inhom(r), Ĥinhom(r), and K̂inhom(r). We restate the mean of K̂inhom (Lawrence et al., 2016; Møller and
Rubak, 2016) and adapt the proof to Proposition 1 in van Lieshout (2011) for Rd, to show that
F̂inhom is unbiased and Ĥinhom is ratio unbiased for S2. In addition we also provide the expectation
of Ĥinhom(r).

Theorem 3. Let X be a spherical Poisson process on S2 with known intensity function ρ : S2
↦→ R+,

such that ρ̄ = infx∈S2 ρ(x) > 0. Then the estimators for F̂inhom(r), and K̂inhom(r) are unbiased whilst
Ĥinhom(r) is ratio-unbiased. More precisely,

E[F̂inhom(r)] = 1 − exp(−ρ̄2π (1 − cos r))

E[Ĥinhom(r)] = 1 −
exp(−ρ̄2π (1 − cos r)) − exp(−µ(S2))

1 −
ρ̄2π (1−cos r)

µ(S2)

E[K̂inhom(r)] = 2π (1 − cos r),

where r ∈ [0, π], and ρ̄ = infx∈S2 ρ(x) > 0. Further by unbiasedness and ratio-unbiasedness of F̂inhom(r)
and Ĥinhom(r), respectively, we immediately have ratio-unbiasedness of Ĵinhom(r).
11
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Proof. See Lawrence et al. (2016) for treatment of K̂inhom(r). Results for F̂inhom(r) and Ĥinhom(r) follow
rom a trivial adaptation of the proof for Proposition 1 in van Lieshout (2011). For the expectation
f Ĥinhom(r) see Theorem 3, Section S3 of the Supplementary Material. □

Theorem 3 shows that Ĥinhom(r) is a biased estimator for Hinhom(r). Although biased it can be
ounded.

orollary 2. With the same assumptions as Theorem 3, let X be a spherical Poisson process on S2

ith intensity function ρ : S2
↦→ R+. Defining ρ̄ = infx∈S2 ρ(x), the bias of the estimator Ĥinhom(r) is

ounded by

|Bias(Ĥinhom(r))| ≤ exp(−µ(S2)) ≤ exp(−4πρ̄),

or all r ∈ [0, π].

roof. See Corollary 2, Section S3 of the Supplementary Material. □

Corollary 2 shows that, depending on the intensity function and hence ρ̄ = infx∈S2ρ(x), the bias
an be considered negligible. In the examples to come we set the expected number of events in the
rocess to be large enough for the bias to be considered negligible. Next we provide the variance
f the estimators of the functional summary statistics.

heorem 4. Let X be a spherical Poisson process on S2 with known intensity function ρ : S2
↦→ R+,

uch that ρ̄ = infx∈S2 ρ(x) > 0. Then the estimators K̂inhom(r), F̂inhom(r), and Ĥinhom(r) have variance,

Var(K̂inhom(r)) =
1

8π2

∫
S2

∫
S2

1[d(x, y) ≤ r]
ρ(x)ρ(y)

λS2 (dx)λS2 (dy) + (1 − cos r)2
∫
S2

1
ρ(x)

λS2 (dx),

Var(F̂inhom(r)) =
exp

(
−2ρ̄λS2 (BS2 (o, r))

)
|P|

2

∑
p∈P

∑
p′∈P

exp

(∫
BS2 (p,r)∩BS2 (p

′,r)

ρ̄2

ρ(x)
λS2 (dx)

)
− exp

(
−2ρ̄λS2 (BS2 (o, r))

)
,

Var(Ĥinhom(r))

=
1

µ2(S2)

∫
S2

∫
S2

(
ρ(x) − ρ̄1[x ∈ BS2 (y, r)]

) (
ρ(y) − ρ̄1[y ∈ BS2 (x, r)]

)
e−µ(S2)

A2
1(x, y)

(
eµ(S2)A1(x,y) − 1 − Ei(µ(S2)A1(x, y)) + γ + log(µ(S2)A1(x, y))

)
λS2 (dx)λS2 (dy)

+
1

µ(S2)

∫
S2

e−µ(S2)

A2(x)
(
γ + log(µ(S2)A2(x)) − Ei(µ(S2)A2(x))

)
ρ(y)λS2 (dy)

−
e−2µ(S2)(

1 −
ρ̄

µ(S2)2π (1 − cos r)
)2
(
e
µ(S2)

(
1− ρ̄

µ(S2)
2π (1−cos r)

)
− 1

)2

here,

A1(x, y) = 1 −
2ρ̄

µ(S2)
2π (1 − cos r) +

ρ̄2

µ(S2)

∫
1

ρ(z)
λS2 (dz)
BS2 (x,r)∩BS2 (y,r)

12
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A2(x) = 1 −
2ρ̄

µ(S2)
2π (1 − cos r) +

ρ̄2

µ(S2)

∫
BS2 (x,r)

1
ρ(y)

λS2 (dy)

Ei(x) = −

∫
∞

−x

e−t

t
dt

nd Ei(x) is the exponential integral and r ∈ [0, π].

roof. See Theorem 4, Section S4 of the Supplementary Material. □

Due to the complexity of the estimator for the Ĵinhom-function, its mean and variance are
xtremely complex and although can be derived in terms of integrals over S2, we instead give an

approximation based on the Taylor series expansion of the function f (x, y) = x/y around the means
of the numerator and denominator. We first provide conditions for which the first two moments of
Ĵinhom(r) exist and then proceed to show how it can be approximated.

Theorem 5. Let X be a spheroidal Poisson process with intensity function ρ : S2
↦→ R+ such that

ρ̄ ≡ infx∈S2 ρ(x) > 0. Let P be any finite grid on S2 and define rmax = sup{r ∈ [0, π] : there exists p ∈

P such that ρ(x) ̸= ρ̄ for all x ∈ BS2 (p, r)}. Then for any given r ∈ [0, rmax] both E[Ĵinhom(r)] and
Var(Ĵinhom(r)) exist.

Proof. See Theorem 5, Section S5 of the Supplementary Material. □

Proposition 1. Let X be a spheroidal Poisson process with known intensity function ρ : S2
↦→ R+.

Then the covariance between 1 − Ĥinhom(r) and 1 − F̂inhom(r) for r ∈ [0, π] is,

Cov(1 − Ĥinhom(r), 1 − F̂inhom(r))

=
1
|P|

∑
p∈P

∫
S2

(
1 −

ρ̄1[x ∈ BS2 (p, r)]
ρ(x)

)
exp

{
−2ρ̄2π (1 − cos r) −

∫
BS2 (x,r)∩BS2 (p,r)

ρ̄2

ρ(y)λS2 (dy)
}

A(x, p)
ρ(x)
µ(S2)

λS2 (dx)

− exp(−2π (1 − cos r)ρ̄)
(
exp(−2π (1 − cos r)ρ̄) − exp(−µ(S2)

) µ(S2)
µ(S2) − 2π (1 − cos r)ρ̄

,

here P is a finite grid of points on S2 and,

A(x, p) = 1 −
2ρ̄

µ(S2)
2π (1 − cos r) +

1
µ(S2)

∫
BS2 (x,r)∩BS2 (p,r)

ρ̄2

ρ(y)
λS2 (dy).

roof. See Proposition 1, Section S5 of the Supplementary Material. □

Using a Taylor series expansion (see Section S5.2 of the Supplementary Material), we can
pproximate the expectation and variance of Ĵinhom(r) as

E
[
X
Y

]
≈

µX

µY
−

Cov(X, Y )
µ2

Y
+

Var(Y )µX

µ3
Y

(16)

Var
(
X
Y

)
≈

µX

µY

[
Var(X)

µ2
X

− 2
Cov(X, Y )

µXµY
+

Var(Y )
µ2

Y

]
, (17)

where X = 1 − Ĥinhom(r) and Y = 1 − F̂inhom(r). The terms in Eqs. (16) and (17) are given in
heorems 3 and 4, and Proposition 1.
13
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Fig. 1. Example of simulating and mapping a CSR process on the cube to the sphere. Left: example of a CSR process on a
cube with l = 1 and constant intensity function 50. Middle: mapping of events from cube to the sphere by the function
f (x) = x/∥x∥. Right: mapped point pattern on the sphere with the new intensity function indicated by the colour on the
sphere. High intensity is indicated by light areas whilst low intensity is indicated by dark areas.

6. Examples

We now look at two examples where we simulate homogeneous Poisson processes on their
surfaces and construct the previously described functional summary statistics.

6.1. Cube

We define a centred cube over each of the six faces with a side length 2l, where l = 1. The
evel-set function for a cube is,

g(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x3 − l, for − l ≤ x1, x2 ≤ l
x3 + l, for − l ≤ x1, x2 ≤ l
x2 − l, for − l ≤ x1, x3 ≤ l
x2 + l, for − l ≤ x1, x3 ≤ l
x1 − l, for − l ≤ x2, x3 ≤ l
x1 + l, for − l ≤ x2, x3 ≤ l.

sing Theorem 2 we can derive the intensity function for the point process that is mapped to the
phere. By symmetry we need only consider one of the faces of the cube and by rotation we will
e able to derive the intensity function on the sphere. Consider the bottom face, i.e. x3 = −l, and
n the notation of Theorem 2 label this D1. Then,

l1(x) = 1
J(1,f ∗)(x) = (1 + x1 + x2)2,

nd so the intensity function over f (D1) is,

ρ∗

1 (x) = ρ(1 + (f ∗−1
1 (x1))2 + (f ∗−1

2 (x2))2)2(1 − x21 − x22)
1
2 ,

here fi(xi) = xi/||x||. Thus by the appropriate rotations the intensity function over the entire
phere is,

ρ∗(x) =

⎧⎪⎨⎪⎩
ρ(1 + (f ∗−1

1 (x1))2 + (f ∗−1
2 (x2))2)2(1 − x21 − x22)

1
2 , x ∈ f (D1) ∪ f (D2)

ρ(1 + (f ∗−1
1 (x1))2 + (f ∗−1

3 (x3))2)2(1 − x21 − x23)
1
2 , x ∈ f (D3) ∪ f (D4)

∗−1 2 ∗−1 2 2 2 2 1

ρ(1 + (f2 (x2)) + (f3 (x3)) ) (1 − x2 − x3) 2 , x ∈ f (D5) ∪ f (D6),

14
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Fig. 2. Examples of Kinhom- (top left), Finhom- (top right), Hinhom- (bottom left), and Jinhom- (bottom right) functions for CSR
patterns on a cube with l = 1 and ρ = 5. Solid line is the estimated functional summary statistic for our observed data,
dashed line is the theoretical functional summary statistic for a Poisson process, and the grey shaded area represents the
simulation envelope from 99 Monte Carlo simulations of Poisson processes fitted to the observed data.

where D1,D2,D3,D4,D5, and D6 are the faces such that z = −1, z = 1, y = −1, y = 1, x = −1,
and x = 1 respectively. Fig. 1 demonstrates mapping from a cube with l = 1 and ρ = 50 to the unit
sphere where the shading over the sphere indicates areas of low (dark) and high (light) intensity.
The figure also shows an example of a CSR pattern over the cube and how this pattern changes
under the mapping.

In order to be able to construct the inhomogeneous F-, and H-function we need to determine
infx∈S2 ρ∗(x). By the nature of the function f (x) = x/∥x∥ and assuming that l ≥ 1, then mapping
events from the cube to the sphere causes events to be more concentrated on the sphere compared
to the cube, thus increasing the corresponding intensity on the sphere. Therefore, the lowest
achievable intensity occurs at the centre of each face of the cube, i.e. for the bottom face it occurs
15
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Fig. 3. Example of simulating and mapping a CSR process on a prolate ellipsoid to the sphere. Left: example of a CSR
process on a prolate ellipsoid with a = b = 1, c = 3 and ρ = 5. Middle: mapping of events from prolate ellipsoid to
the sphere by the function f (x) = (x1/a, x2/b, x3/c)T . Right: mapped point pattern on the sphere with the new intensity
function indicated by the colour on the sphere. High intensity is indicated by light areas whilst low intensity is indicated
by dark areas.

when x1 = x2 = 0, giving infx∈S2 ρ∗(x) = ρ. Fig. 2 gives examples of the inhomogeneous K -, F-, H-,
and J-functions where l = 1 and ρ = 5 and are typical when the observed process is CSR.

6.2. Ellipsoid

An ellipsoid is defined by its semi-major axis lengths a, b, c ∈ R along x-, y-, and z-axis
respectively. Again we also assume that the ellipsoid is centred at the origin. The level-set function
for ellipsoids is given by g(x) = x21/a

2
+ x22/b

2
+ x23/c

2
−1, in this current form g̃ is not well defined

in which case we shall use the following equivalent representation

g(x) =

{
x21/a

2
+ x22/b

2
+ x23/c

2
− 1, for x3 ≥ 0

x21/a
2
+ x22/b

2
+ x23/c

2
− 1, for x3 < 0.

This representation then allows for g̃ to be well defined for each partition of the ellipsoid.
We now demonstrate our methodology on an ellipsoid with semi-major axis lengths a = 1, b =

1, and c = 3 along the x-, y-, and z-axis respectively. Instead of using the function f (x) = x/∥x∥
to map from the ellipsoid to the sphere, we can use a simpler mapping function which makes
calculation of the determinant J(i,f ∗)(x) in Theorem 2 significantly easier. We can simply scale along
the axis directions, i.e. use the mapping f (x) = (x1/a, x2/b, x3/c)T . Using this mapping function, as
opposed to dividing each vector by the norm of itself, and focusing on the bottom hemiellipsoid
(indicated by the minus superscript), then

l−(x) =

√1 −

(
1 −

c2
a2

)
x21 −

(
1 −

c2
b2

)
x22

1 − x21 − x22
, J(−,f ∗)(x) = ab,

and so on the lower hemisphere the intensity function takes the form

ρ∗

−
(x) = ρab

√
1 −

(
1 −

c2

a2

)
x21 −

(
1 −

c2

b2

)
x22.

By symmetry the mapped intensity function over the whole sphere is then

ρ∗(x) = ρab

√
1 −

(
1 −

c2

a2

)
x21 −

(
1 −

c2

b2

)
x22.

Again we need to calculate infx∈S2 ρ∗(x). Noting that c ≥ a = b, thus −
(
1 − c2/a2

)
≥ 0

and −
(
1 − c2/b2

)
≥ 0, then the square root term is minimised when x and x are 0, hence
1 2

16



S. Ward, E.A.K. Cohen and N. Adams Spatial Statistics 41 (2021) 100489

C
s
g
o

i
e
a
l

7

s
i

Fig. 4. Examples of Kinhom- (top left), Finhom- (top right), Hinhom- (bottom left), and Jinhom- (bottom right) functions for
SR patterns on a prolate ellipsoid with a = b = 1, c = 3, and ρ = 5. Solid line is the estimated functional summary
tatistic for our observed data, dashed line is the theoretical functional summary statistic for a Poisson process, and the
rey shaded area represents the simulation envelope from 99 Monte Carlo simulations of Poisson processes fitted to the
bserved data.

nfx∈S2 ρ∗(x) = ρab. An example of this mapping is given in Fig. 3. Using this we can construct the
stimators of the inhomogeneous functional summary statistics given by Eqs. (12)–(15). Examples
re given in Fig. 4. These figures are typical for CSR with the estimated functional summary statistics
ying well within the simulation envelopes.

. Regular & cluster processes on D

We examine some regular and cluster processes on D. In particular, we examine how functional
ummary statistics constructed under the Poisson hypothesis deviate when the underlying process
s in fact not Poisson. We shall be using the Matérn I and II inhibition processes (Chiu et al., 2013)
17
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as examples of regular processes, and Thomas processes as a cluster example. Definitions for the
Matérn I, II and Thomas processes on convex shapes will also be presented, whilst properties of
such processes are given in Section S6 of the Supplementary Material.

7.1. Examples of regular and cluster processes on convex shapes

A common way of defining a regular process is using a minimum distance R, known as the
ardcore distance, for which no events in the process has a nearest neighbour closer than R. In
ypical applications R is usually the Euclidean distance (in Rd) or the great circle distance (in S2), but
n an arbitrary three dimensional convex shape, D, this distance is taken as the geodesic distance

defined by the surface. The following definitions extend the Matérn I and II processes to a convex
shape with geodesic distance d(x, y), x, y ∈ D.

efinition 3. Let X be a homogeneous Poisson process on D with intensity ρ ∈ R+. Fix R > 0,
and thin X according to the following rule: delete events x ∈ X if there exists y ∈ X \ {x} such
that d(x, y) < R, otherwise retain x. The resulting thinned process is then defined as a Matérn I
inhibition process on D.

Definition 4. Let X be a homogeneous Poisson process on D with intensity ρ ∈ R+. Fix R > 0, and
let each x ∈ X have an associated mark, Mx drawn from some mark density PM independently of all
other marks and events in X . Thin X according to the following rule: delete the event x ∈ X if there
exists y ∈ X \ {x} such that d(x, y) < R and My < Mx, otherwise retain x. The resulting thinned
process is then defined as a Matérn II inhibition process on D.

We also extend the Neyman–Scott process, a class of cluster processes, to arbitrary convex
shapes.

Definition 5. Let XP be a homogeneous Poisson process on D with intensity ρ ∈ R+. Then for each
c ∈ XP define Xc to the point process with intensity function ρc(x) = αk(x, c), where α > 0 and
k : D × D ↦→ R is a density function and NXc (D) can be any random counting measure associated
to Xc. The point process X = ∪c∈XpXc is a Neyman–Scott process.

A Thomas process is a specific Neyman–Scott process where the density function k(·, ·) has
a specific form. In R2, k is taken to be an isotropic bivariate Gaussian distribution (Møller and
Waagepetersen, 2004), whilst on S2 it is taken as the Von-Mises Fisher distribution (Lawrence et al.,
2016). We define a Thomas process on D to be a Neyman–Scott process with density function k of
the form,

k(x, y) =
1

χ (κ2)
exp

(
−

d2(x, y)
2κ2

)
,

where κ is a bandwidth parameter and χ (κ) =
∫
D exp

(
−d(x, y)/2κ2

)
λD(y). This is known as the

Riemannian Gaussian distribution (Said et al., 2017), where on the plane this would reduce to an
isotropic bivariate Gaussian.

7.2. Functional summary statistics assuming a homogeneous Poisson process

We simulate Matérn II, and Thomas processes and construct estimates of their functional sum-
mary statistics under the assumption that they are CSR. The inhomogeneous functional summary
statistics are displayed in Fig. 5. Comparing Fig. 5 to typical functional summary statistics for regular
and cluster processes in R2, we see the same types of deviations away from CSR. In particular, we see
for regular processes with small r that there are negative deviations, whilst the cluster process has
large positive deviations for the K̃inhom-function. Furthermore, the Ĵinhom-function shows significant
positive deviations for regular processes whilst negative ones are observed for cluster processes.

Fig. 5 highlights the importance of considering many different functional summary statistics
when attempting to draw conclusions from the data (Diggle, 2003). More precisely consider the top
18
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a

Fig. 5. Example of (from left to right) Kinhom-, Jinhom-, Finhom-, and Hinhom-functions for a Matérn II with parameters R = 0.3
nd exponential mark distribution with rate λ = 1 (top row), Poisson process (middle row), and Thomas process with

parameters κ = 0.1 and offspring expectation 15 (bottom row) on a prolate spheroid with dimensions (a, b, c) = (1, 1, 3)
all with expectation 100. Solid line is the estimated functional summary statistics for our observed data, dashed line is
the theoretical functional summary statistic for a Poisson process, and the grey shaded area is the simulation envelopes
from 99 Monte Carlo simulations of Poisson processes fitted to the observed data.

row of Fig. 5 which refers to a Matérn II process with hardcore distance R = 0.3 and E[NX (D)] = 100.
If we were to only consult the Kinhom simulation envelope (top left figure) then we may be hesitant
to reject CSR, but when we examine the Hinhom and Jinhom simulation envelope plots there is strong
evidence to suggest that this process is not CSR and is in fact regular. Thus, for this specific setting,
the simulation envelope plots of the Jinhom function provide greater power compared to those
produced with the Kinhom function, especially for smaller r (Baddeley et al., 2015, p. 235). This effect
is also seen in Figure 1 of van Lieshout (2011) for Log Gaussian Cox processes on R2, where for
small values of r the Kinhom is unable to provide evidence against the process being inhomogeneous
Poisson but examining both the Finhom and Hinhom provides greater evidence against this hypothesis.

This phenomena was first discussed by Baddeley and Silverman (1984), where they show that
it is possible to construct planar processes which are not homogeneous Poisson but have the same
K -function. This is also discussed by Baddeley et al. (2000) in Section 2.4 in the inhomogeneous
setting. Similar arguments to those in Baddeley et al. (2000) and Baddeley and Silverman (1984)
can be used to construct spheroidal processes that are not Poisson but exhibit the same K -function
as any given Poisson process with the same intensity. This discussion serves as a precautionary
warning to consulting only one individual functional summary statistic and it is therefore important
to consider many to avoid drawing improper conclusions from data.
19



S. Ward, E.A.K. Cohen and N. Adams Spatial Statistics 41 (2021) 100489

L
1
s
p
W

I
f
w
P
i
i

8

n

w

t

(
b
R

8. Testing for CSR on convex shapes in R3

Exploratory data analysis for spatial point patterns in R2 typically begins with testing whether
the observed point pattern exhibits CSR where test statistics are frequently based on the L-function,
(r) =

√
K (r)/π . On R2 and under CSR the L-function is linear in r and variance stabilised (Besag,

977) whilst Lawrence (2018) discusses the analogue L-function in S2 where again it is variance
tabilised when the underlying process is CSR. As we are working with inhomogeneous Poisson
rocesses on S2 an equivalent transformation for the L function has not been discussed previously.
e propose two test statistics:

1. an extension of the analogue L - function proposed by Lawrence (2018) to the inhomogeneous
setting, and

2. a standardisation of the inhomogeneous K - function inspired by Lagache et al. (2013).

n order to construct the latter we must derive first and second order properties of the estimated
unctional summary statistics. Section 7 discusses derivations for any spherical Poisson process
hen ρ is known. In this section we consider the scenario when we have a homogeneous
oisson process on D with unknown intensity ρ ∈ R+. Furthermore we shall only focus on the
nhomogeneous K -function as standardisation of the remaining functional summary statistics follow
dentically.

.1. Test statistic for CSR

Given a homogeneous Poisson process on D with intensity ρ ∈ R+, we map this to S2 giving a
ew Poisson process on the sphere with inhomogeneous intensity function given by Theorem 2 as

ρ∗(x) =

⎧⎪⎪⎨⎪⎪⎩
ρl1(f −1(x))J(1,f ∗)(x)

√
1 − x21 − x22, x ∈ f (D1)

...

ρln(f −1(x))J(n,f ∗)(x)
√
1 − x21 − x22, x ∈ f (Dn).

(18)

Using Theorems 3 and 4 we can calculate the mean and variances of the inhomogeneous
K -function when ρ is known. When ρ is unknown we use estimators of ρ when constructing
functional summary statistics. In particular we use

ρ̂ =
NX (D)
λD(D)

, ρ̂2 =
NX (D)(NX (D) − 1)

λ2
D(D)

,

hich are both unbiased for ρ and ρ2 respectively by application of the Campbell–Mecke Theo-
rem (Møller and Waagepetersen, 2004). Thus our estimator for Kinhom(r) when ρ is unknown takes
he following form,

K̃inhom(r) =

{
λ2D(D)

4πNY (S2)(NY (S2)−1)

∑
x∈Y

∑
y∈Y\{x}

1[d(x,y)≤r]
ρ̃(x)ρ̃(y) , if NY (S2) > 1

0, otherwise,
(19)

where Y = f (X), f is our mapping from the ellipsoid to the sphere, and ρ̃(x) is given by,

ρ̃(x) =

⎧⎪⎪⎨⎪⎪⎩
l1(f −1(x))J(1,f ∗)(x)

√
1 − x21 − x22, x ∈ f (D1)

...

ln(f −1(x))J(n,f ∗)(x)
√
1 − x21 − x22, x ∈ f (Dn).

(20)

Note that NY (S2) = NX (D2).
An analogue L - function for isotropic spherical point processes was introduced by Lawrence

2018) in which the square root of Ripley’s spherical K - function is taken. This transformation
enefits from approximate variance stabilisation in the same sense as the L - function does in
d (Besag, 1977) but is not linearised. In the planar setting a multiplicative factor of 1/

√
π can
20
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be used such that L(r) = r but due to the more complex form of K on S2 a simple linearising
transformation is not intuitive. Therefore Lawrence (2018) suggests subtracting the theoretical value
in order for the summary statistic to be zero in the event a process is Poisson. Following this line of
thought we then propose, in the inhomogeneous setting, the following functional summary statistic
Pinhom(r) =

√
Kinhom(r)−

√
2π (1 − cos(r)), where we use Pinhom rather than Linhom to avoid confusion

ith the Euclidean L - function as Pinhom takes a very different form to its Euclidean counterpart. In
he event of a homogeneous Poisson process over D (and hence a inhomogeneous Poisson process
ver S2) we can estimate Pinhom as,

P̃inhom(r) =

√
K̃inhom(r) −

√
2π (1 − cos(r)).

Diggle (2003) proposes using the maximum absolute value between the theoretical and the
estimated functional summary statistics to test for CSR. Based on this we propose the following
two test statistics,

T1 = sup
r∈[0,π ]

⏐⏐⏐P̃inhom(r)⏐⏐⏐ , T2 = sup
r∈[0,π ]

⏐⏐⏐⏐⏐⏐ K̃inhom(r) − 2π (1 − cos(r))√
V̂ar(K̃inhom(r))

⏐⏐⏐⏐⏐⏐ , (21)

he first based on the work of Lawrence (2018) and the second on the work of Lagache et al. (2013).
n order to be able to construct the test statistic T2, an estimate of the variance of the empirical
unctional summary statistics are required. Further, we need show that the bias of K̃inhom(r) is
egligible and hence E[K̃inhom(r)] ≈ 2π (1 − cos(r)) for Poisson processes, validating its use in (21).
y using estimators for ρ and ρ2 we alter the first and second order properties given by Theorems 3
nd 4. In the following we consider the first and second order moments of K̃inhom.

.2. Estimating moments of K̃inhom(r) on S2 for CSR process on D

heorem 6. The bias and variance of K̃inhom(r) are,

Bias(K̃inhom(r)) = −P(NY (S2) ≤ 1)2π (1 − cos r),

nd,

Var(K̃inhom(r)) = 4π2(1 − cos r)2(1 − P(NY (S2) ≤ 1))P(NY (S2) ≤ 1)

+ ρ3λ4
D(D)(1 − cos r)2

(∫
S2

1
ρ̃(x)

λS2 (dx) −
16π2

λD(D)

)
E
[

1
(NY (S2) + 3)2(NY (S2) + 2)2

]
+

ρ2λ4
D(D)

8π2

(∫
S2

∫
S2

1[d(x1, x2) ≤ r]
ρ̃(x1)ρ̃(x2)

λS2 (dx1)λS2 (dx2) −
64π4(1 − cos r)2

λ2
D(D)

)
× E

[
1

(NY (S2) + 2)2(NY (S2) + 1)2

]
,

(22)

here ρ̃(x) is given by Eq. (20).

roof. See Theorem 6, Section S7 of the Supplementary Material. □

The form of the variance derived in Theorem 6 is near identical to that derived by Lang and
arcon (2013) except that our derivations consider inhomogeneous Poisson processes, does not

equire corrections for edge effects, and the space is S2 instead of R2. Further we can bound the
bsolute value of the bias as follows

|Bias(K̃inhom(r))| = P(NY (S2) ≤ 1)2π (1 − cos r)
= exp(−µY (S2))(1 + µY (S2))2π (1 − cos r)

2 2

≤ 4π (1 + µY (S )) exp(−µY (S )) (23)

21
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≤ 4π (1 + µY (S2))µY (S2)−e
= O (

µ1−e
Y (S2)

)
, (24)

where µY is the intensity measure of Y = f (X), the inequality in (23) is attained by setting r = π ,
and (24) follows from ex ≥ xe. Thus, for shapes considered in this work, the bias will be negligible.

From Theorem 6 it is possible to construct a ratio-unbiased estimator for the variance. In
particular by the Campbell–Mecke Theorem, and defining the estimator ρ̂k = NY (S2)(NY (S2) −

1) · · · (NY (S2) − k − 1)/λk
D(D), then E[ρ̂k] = ρk and so ρ̂k is unbiased for ρk. We can substitute

the expectations in (22) with their corresponding observed values, for example we substitute
(NY (S2)+3)−2(NY (S2)+2)−2 for E[(NY (S2)+3)−2(NY (S2)+2)−2

]. Additionally, the following lemma
helps derive a ratio unbiased estimator for P(NY (S2) < 1).

Lemma 2. Let N ∼ Poisson(λ), k ∈ N and p ∈ R+. Define the following random variable,

R =
N!eN−k

(N − k)!(e + p)N
. (25)

Then R is ratio-unbiased for λke−pλ.

Proof. See Lemma 2, Section S7 of the Supplementary Material. □

Using Lemma 2 we can construct a ratio-unbiased estimator for (1 − P(NY (S2) < 1))P(NY (S2) <

1). Defining λ = ρλD(L),

(1 − P(NY (S2) < 1))P(NY (S2) < 1) = (1 − e−λ
− λe−λ)(e−λ

+ λe−λ)
= e−λ

+ λe−λ
− e−2λ

− 2λe−2λ
− λ2e−2λ,

and so a ratio-unbiased estimator for (1 − P(NY (S2) < 1))P(NY (S2) < 1) is

eNY (S2)

(e + 1)NY (S2)
+

NY (S2)eNY (S2)−1

(e + 1)NY (S2)
+

eNY (S2)

(e + 2)NY (S2)
−

2NY (S2)eNY (S2)−1

(e + 2)NY (S2)

−
NY (S2)(NY (S2) − 1)eNY (S2)−2

(e + 2)NY (S2)
.

Plugging the given estimators for (1 − P(NY (S2) < 1))P(NY (S2) < 1), ρ2, ρ3, E
[
(NY (S2) + 3)−2

(NY (S2) + 2)−2
]
and E

[
(NY (S2) + 2)−2(NY (S2) + 1)−2

]
into (22) gives a ratio unbiased estimator for

Var(K̃inhom(r)), which in turn allows for the construction of the test statistic T2 in (21).

8.3. Standardised inhomogeneous K-function plots

Fig. 6 highlights how the empirical K -function estimates deviate when the underlying process
is not CSR. For the regular processes we notice considerable negative deviations for small r whilst
or cluster processes positive deviations are observed, highlighted in the right column of Fig. 6.

Intuitively, this is to be expected, with a near identical reasoning to what is observed for the
-function in R2,3. Since the regular process has a hard-core distance between events, we observe

estimates for Kinhom(r) that are close to zero for small r , thus resulting in the large negative deviation
bserved in Fig. 6. On the other hand, for the Thomas cluster process, we observe events in closer
roximity than would be expected for a CSR process, thus the estimated Kinhom(r) function has large
ositive deviations away from CSR.
Further to this, the second row of Fig. 6 corresponding to a Poisson process highlights the

mportance of applying a variance stabilising transform. If we based a test statistic on Kinhom(r) −

π (1 − cos(r)) (or even Kinhom(r)) then these plots suggest worst power compared to the Pinhom-

nd the standardised Kinhom-functions.
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Fig. 6. Example of (from left to right) Kinhom-, Kinhom −2π (1− cos(r))-, Pinhom-, and the standardised Kinhom-functions for a
atérn II with R = 0.2, an exponential mark distribution with rate λ = 1 and expectation 100 (top row), Poisson process
ith expectation 40π (middle row), and Thomas process with parameters κ = 0.5, expectation of 150 and offspring mean
f 20 (bottom row) on a prolate spheroid with a = b = 0.8000, c = 1.43983 (dimensions chosen so that the area of
he ellipsoid is 4π ). Solid line is the estimated functional summary statistics for our observed data, dashed line is the
heoretical functional summary statistic for a Poisson process, and the grey shaded area is the simulation envelopes from
99 Monte Carlo simulations of Poisson processes fitted to the observed data.

. Simulation study

We conduct empirical Type I and II error studies to evaluate the effectiveness of the proposed
est statistic in determining whether or not a point process on a convex shape exhibits CSR. We
onsider different prolate ellipsoids such that the area of the ellipsoid is the same across differing
emi-major axis lengths. This will allow us to determine how the power of our test changes as the
pace under consideration deforms further away from the unit sphere.

.1. Design of simulations

In order to best understand the properties of our testing procedure we will consider CSR, Matérn
I and Thomas processes on different prolate spheroids. We design the experiments such that the
xpected number of events is similar across all experiments. For both the CSR and Thomas process
imulations this is easily controlled. For a Poisson process, the expected number on D is ρλD(D)
hilst for a Thomas process it is given by Proposition S3, Section S6 in the Supplementary Materials.
On the other hand, the Matérn II process requires a little more attention since Corollary S4

Section S6 of the Supplementary Materials) limits the maximum expected number of possible
23



S. Ward, E.A.K. Cohen and N. Adams Spatial Statistics 41 (2021) 100489

t

p
R

c
i
o

w

Table 1
Results when the observed data is CSR. The semi-major axis length along the x-axis, a, and y-axis, b, are equivalent and
he semi-major axis length along the z-axis is determined such that the area of the ellipsoid is 4π .
Experiment No. Expectation a ρ Reject H0 : T1 Reject H0 : T2
1a 40π 1 10 0.0250 0.0480
1b 40π 0.8 10 0.0390 0.0390
1c 40π 0.6 10 0.0440 0.0430
1d 40π 0.4 10 0.0560 0.0560

events for a given space D. Thus, for a given expected number µ that is less than or equal to the one
rescribed by Corollary S4 (Section 6 of the Supplementary Materials) we fix the hard-core distance
and solve the following equation for ρ∫

B

1 − e−ρλD(BD(x,R))

λD(BD(x, R))
λD(dx) = µ. (26)

A full outline of all the experiments and the parameters chosen are given in Tables 1, 2, and 3
for CSR, regular, and cluster process simulations respectively. Note that when R = 0 for the Matérn
II process and when κ = ∞ for the Thomas process both processes are CSR.

9.2. Test statistics

Calculating |P̃inhom(r)| and |(K̃inhom(r) − 2π (1 − cos r))/(V̂ar(K̃inhom(r)))1/2| over all r ∈ [0, π] is
omputationally infeasible and so we instead calculate it for r ∈ R = {r1, . . . , rm}, m ∈ N, where R
s a finite set of distinct, evenly spaced points such that ri ∈ [0, π], i = 1, . . . ,m, for the purposes
f our simulation studies. We then take our test statistic as

T1 = max
r∈R

⏐⏐⏐P̃inhom(r)⏐⏐⏐ , T2 = max
r∈R

⏐⏐⏐⏐⏐⏐ K̃inhom(r) − 2π (1 − cos(r))√
V̂ar(K̃inhom(r))

⏐⏐⏐⏐⏐⏐ .
here for these simulation studies we set R = {0, 0.02, 0.04, . . . , π}. These simulations are tested

at a 5% significance level. Each experiment is repeated 1000 times, and for each experiment we
simulate 999 Poisson processes to approximate the critical values of the hypothesis test.

9.3. Results

Tables 1–3 outline the parameter selection and results of our simulations. By the nature of
Monte Carlo simulations the CSR results given in Table 1 are as to be expected with an empirical
rejection rate close to 0.05. Expectedly, we see that for the same ellipsoid i.e. a kept constant, that
when the Matérn II parameter R increases and the Thomas process parameter κ decreases (each
representing an increased departure from CSR), the power of our test improves. In the Section S6.3
of the Supplementary Material we discuss a potential reason for the power of our test decreasing
as a decreases (hence c increases), for both regular and cluster processes, for the same R and κ
respectively. Additionally, Fig. 5 suggests we may gain power by considering a two sided test.

We see that T1 achieves greater empirical power compared to T2 over the majority of exper-
iments considered in our simulation study. This is clearly the case when a = 1 or 0.8 for the
Matérn II process whilst when a = 0.6 or 0.4 the distinction is not as clear. In particular, T2
achieves considerably greater empirical power for Experiment (2civ). For the Thomas process we
see that T1 out performs T2 in nearly all experiments for all values of a. These result suggest the
following considerations in practice: (1) consider T1 before T2 since computing T1 is simpler, (2) if
T1 does not provide sufficient evidence against the null then T2 may provide additional information
or even considering another functional summary statistic that has been developed in this work.
Although a formal hypothesis test may be sought, these results emphasise that this should not be
without a detailed examination of simulation envelope plots which can potentially provide further
information. In particular, simulation envelope plots can give indications as to whether the point
pattern exhibits more regular or clustered behaviour (Diggle, 2003).
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Table 2
Results when the observed data is a Matérn II process, with independent mark being exponential with rate 1. The semi-
major axis length along the x-axis, a, and y-axis, b, are equivalent and the semi-major axis length along the z-axis is
determined such that the area of the ellipsoid is 4π . Fixing the expectation, µ, and hard-core distance, R, we use Eq. (26)
to calculate ρ for the underlying constant Poisson process intensity function. When R = 0 a Matérn II process collapses
to a CSR process.
Experiment No. Expectation a R Reject H0 : T1 Reject H0 : T2
2ai 100 1 0 0.0450 0.0750
2aii 100 1 0.05 0.2520 0.0270
2aiii 100 1 0.1 1.0000 0.4550
2aiv 100 1 0.2 1.0000 1.0000

2bi 100 0.8 0 0.0440 0.0550
2bii 100 0.8 0.05 0.0460 0.0030
2biii 100 0.8 0.1 0.8460 0.0370
2biv 100 0.8 0.2 1.0000 1.0000

2ci 100 0.6 0 0.0520 0.0510
2cii 100 0.6 0.05 0.0540 0.0060
2ciii 100 0.6 0.1 0.0260 0.0010
2civ 100 0.6 0.2 0.2990 0.7790

2di 100 0.4 0 0.0440 0.0410
2dii 100 0.4 0.05 0.0400 0.0100
2diii 100 0.4 0.1 0.0270 0.0000
2div 100 0.4 0.2 0.0020 0.0020

Table 3
Results when the observed data is an ellipsoidal Thomas process. The expected number of offspring per parent is λ = 20
nd the underlying Poisson parent process has constant intensity function ρ = µ/(4πλ), where µ is the expectation. The

semi-major axis length along the x-axis, a, and y-axis, b, are equivalent and the semi-major axis length along the z-axis
is determined such that the area of the ellipsoid is 4π . When κ = ∞ an ellipsoidal Thomas process collapses to a CSR
process.
Experiment No. Expectation a κ Reject H0 : T1 Reject H0 : T2
3ai 150 1 ∞ 0.0290 0.0440
3aii 150 1 5 0.0330 0.0470
3aiii 150 1 1 0.4620 0.5630
3aiv 150 1 0.5 0.9840 0.9830

3bi 150 0.8 ∞ 0.0460 0.0540
3bii 150 0.8 5 0.0530 0.0570
3biii 150 0.8 1 0.2950 0.2120
3biv 150 0.8 0.5 0.9260 0.9340

3ci 150 0.6 ∞ 0.0490 0.0460
3cii 150 0.6 5 0.0570 0.0610
3ciii 150 0.6 1 0.3730 0.1400
3civ 150 0.6 0.5 0.7480 0.7800

3di 150 0.4 ∞ 0.0670 0.0600
3dii 150 0.4 5 0.0530 0.0360
3diii 150 0.4 1 0.4460 0.2020
3div 150 0.4 0.5 0.6460 0.6350

10. Discussion & conclusion

In this work we have discussed point patterns observed on arbitrary, bounded convex shapes
n R3, motivated by the need for such exploratory analyses in the area of microbiology. We
ave highlighted the challenge of handling such spaces due to the lack of isometries for such
bjects. Using the invariance of Poisson processes (Kingman, 1993), we can circumvent this lack
f isometries in the original space by mapping to the sphere which has rotational symmetries. By
oing so we propose a set of functional summary statistics for the class of Poisson processes. Further

o this we have also proposed functional summary statistics for CSR processes on the convex space

25



S. Ward, E.A.K. Cohen and N. Adams Spatial Statistics 41 (2021) 100489

o
o

and explored their properties. Using this we have, in turn, been able to construct test statistics which
can be used to reject the hypothesis of CSR for observed point patterns. We have also conducted
simulation studies to investigate the effectiveness off the proposed test statistics in rejecting the
null hypothesis when the observed data is either regular or clustered.

Interesting extensions to this work would include relaxing the need for convexity of the shape
f interest. This presents a significant challenge as how one constructs the required mapping is not
bvious. Another consideration is how to construct an estimator of the intensity function on D. One

approach might be to construct it on S2 and inverse map to D. There is, of course, the open question
of how one forms summary statistics for multivariate point processes on convex shapes. Answering
this would have immediate impact in bioimaging applications where experimentalists are regularly
interested in spatial dependencies that exist between two or more different types of molecules.
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