7,799 research outputs found

    Response of an atomic Bose-Einstein condensate to a rotating elliptical trap

    Full text link
    We investigate numerically the response of an atomic Bose-Einstein condensate to a weakly-elliptical rotating trap over a large range of rotation frequencies. We analyse the quadrupolar shape oscillation excited by rotation, and discriminate between its stable and unstable regimes. In the latter case, where a vortex lattice forms, we compare with experimental observations and find good agreement. By examining the role of thermal atoms in the process, we infer that the process is temperature-independent, and show how terminating the rotation gives control over the number of vortices in the lattice. We also study the case of critical rotation at the trap frequency, and observe large centre-of-mass oscillations of the condensate.Comment: 14 pages, 8 figure

    Dynamical formation and interaction of bright solitary waves and solitons in the collapse of Bose-Einstein condensates with attractive interactions

    Full text link
    We model the dynamics of formation of multiple, long-lived, bright solitary waves in the collapse of Bose-Einstein condensates with attractive interactions as studied in the experiment of Cornish et al. [Phys. Rev. Lett. 96 (2006) 170401]. Using both mean-field and quantum field simulation techniques, we find that while a number of separated wave packets form as observed in the experiment, they do not have a repulsive \pi phase difference that has been previously inferred. We observe that the inclusion of quantum fluctuations causes soliton dynamics to be predominantly repulsive in one dimensional simulations independent of their initial relative phase. However, indicative three-dimensional simulations do not support this conclusion and in fact show that quantum noise has a negative impact on bright solitary wave lifetimes. Finally, we show that condensate oscillations, after the collapse, may serve to deduce three-body recombination rates, and that the remnant atom number may still exceed the critical number for collapse for as long as three seconds independent of the relative phases of the bright solitary waves.Comment: 14 pages, 5 figure

    Protogalactic Extension of the Parker Bound

    Get PDF
    We extend the Parker bound on the galactic flux F\cal F of magnetic monopoles. By requiring that a small initial seed field must survive the collapse of the protogalaxy, before any regenerative dynamo effects become significant, we develop a stronger bound. The survival and continued growth of an initial galactic seed field ≤10−9\leq 10^{-9}G demand that F≤5×10−21(m/1017GeV)cm−2sec−1sr−1{\cal F} \leq 5 \times 10^{-21} (m/10^{17} {GeV}) {cm}^{-2} {sec}^{-1} {sr}^{-1}. For a given monopole mass, this bound is four and a half orders of magnitude more stringent than the previous `extended Parker bound', but is more speculative as it depends on assumptions about the behavior of magnetic fields during protogalactic collapse. For monopoles which do not overclose the Universe (Ωm<1\Omega_m <1), the maximum flux allowed is now 8×10−198 \times 10^{-19} cm^{-2} s^{-1} sr^{-1}, a factor of 150 lower than the maximum flux allowed by the extended Parker bound.Comment: 9 pages, 1 eps figur

    The ALFALFA "Almost Darks" Campaign: Pilot VLA HI Observations of Five High Mass-to-Light Ratio Systems

    Get PDF
    We present VLA HI spectral line imaging of 5 sources discovered by ALFALFA. These targets are drawn from a larger sample of systems that were not uniquely identified with optical counterparts during ALFALFA processing, and as such have unusually high HI mass to light ratios. These candidate "Almost Dark" objects fall into 4 categories: 1) objects with nearby HI neighbors that are likely of tidal origin; 2) objects that appear to be part of a system of multiple HI sources, but which may not be tidal in origin; 3) objects isolated from nearby ALFALFA HI detections, but located near a gas-poor early-type galaxy; 4) apparently isolated sources, with no object of coincident redshift within ~400 kpc. Roughly 75% of the 200 objects without identified counterparts in the α\alpha.40 database (Haynes et al. 2011) fall into category 1. This pilot sample contains the first five sources observed as part of a larger effort to characterize HI sources with no readily identifiable optical counterpart at single dish resolution. These objects span a range of HI mass [7.41 < log(MHI_{\rm HI}) < 9.51] and HI mass to B-band luminosity ratios (3 < MHI_{\rm HI}/LB_{\rm B} < 9). We compare the HI total intensity and velocity fields to SDSS optical imaging and to archival GALEX UV imaging. Four of the sources with uncertain or no optical counterpart in the ALFALFA data are identified with low surface brightness optical counterparts in SDSS imaging when compared with VLA HI intensity maps, and appear to be galaxies with clear signs of ordered rotation. One source (AGC 208602) is likely tidal in nature. We find no "dark galaxies" in this limited sample. The present observations reveal complex sources with suppressed star formation, highlighting both the observational difficulties and the necessity of synthesis follow-up observations to understand these extreme objects. (abridged)Comment: Astronomical Journal, in pres

    Real-Time Dynamic Imaging of Virus Distribution In Vivo

    Get PDF
    The distribution of viruses and gene therapy vectors is difficult to assess in a living organism. For instance, trafficking in murine models can usually only be assessed after sacrificing the animal for tissue sectioning or extraction. These assays are laborious requiring whole animal sectioning to ascertain tissue localization. They also obviate the ability to perform longitudinal or kinetic studies in one animal. To track viruses after systemic infection, we have labeled adenoviruses with a near-infrared (NIR) fluorophore and imaged these after intravenous injection in mice. Imaging was able to track and quantitate virus particles entering the jugular vein simultaneous with injection, appearing in the heart within 500 milliseconds, distributing in the bloodstream and throughout the animal within 7 seconds, and that the bulk of virus distribution was essentially complete within 3 minutes. These data provide the first in vivo real-time tracking of the rapid initial events of systemic virus infection

    Semiclassical Equations for Weakly Inhomogeneous Cosmologies

    Full text link
    The in-in effective action formalism is used to derive the semiclassical correction to Einstein's equations due to a massless scalar quantum field conformally coupled to small gravitational perturbations in spatially flat cosmological models. The vacuum expectation value of the stress tensor of the quantum field is directly derived from the renormalized in-in effective action. The usual in-out effective action is also discussed and it is used to compute the probability of particle creation. As one application, the stress tensor of a scalar field around a static cosmic string is derived and the backreaction effect on the gravitational field of the string is discussed.Comment: 35 pages, UAB-FT 316, Latex (uses a4wide.sty, a4.sty included in the file)(replaced due to tex problems
    • …
    corecore