7,799 research outputs found
Synthesis, solution stability, and crystal structure of aza-thia macrocyclic complexes of silver(I).
Response of an atomic Bose-Einstein condensate to a rotating elliptical trap
We investigate numerically the response of an atomic Bose-Einstein condensate
to a weakly-elliptical rotating trap over a large range of rotation
frequencies. We analyse the quadrupolar shape oscillation excited by rotation,
and discriminate between its stable and unstable regimes. In the latter case,
where a vortex lattice forms, we compare with experimental observations and
find good agreement. By examining the role of thermal atoms in the process, we
infer that the process is temperature-independent, and show how terminating the
rotation gives control over the number of vortices in the lattice. We also
study the case of critical rotation at the trap frequency, and observe large
centre-of-mass oscillations of the condensate.Comment: 14 pages, 8 figure
Dynamical formation and interaction of bright solitary waves and solitons in the collapse of Bose-Einstein condensates with attractive interactions
We model the dynamics of formation of multiple, long-lived, bright solitary
waves in the collapse of Bose-Einstein condensates with attractive interactions
as studied in the experiment of Cornish et al. [Phys. Rev. Lett. 96 (2006)
170401]. Using both mean-field and quantum field simulation techniques, we find
that while a number of separated wave packets form as observed in the
experiment, they do not have a repulsive \pi phase difference that has been
previously inferred. We observe that the inclusion of quantum fluctuations
causes soliton dynamics to be predominantly repulsive in one dimensional
simulations independent of their initial relative phase. However, indicative
three-dimensional simulations do not support this conclusion and in fact show
that quantum noise has a negative impact on bright solitary wave lifetimes.
Finally, we show that condensate oscillations, after the collapse, may serve to
deduce three-body recombination rates, and that the remnant atom number may
still exceed the critical number for collapse for as long as three seconds
independent of the relative phases of the bright solitary waves.Comment: 14 pages, 5 figure
Protogalactic Extension of the Parker Bound
We extend the Parker bound on the galactic flux of magnetic
monopoles. By requiring that a small initial seed field must survive the
collapse of the protogalaxy, before any regenerative dynamo effects become
significant, we develop a stronger bound. The survival and continued growth of
an initial galactic seed field G demand that . For a given
monopole mass, this bound is four and a half orders of magnitude more stringent
than the previous `extended Parker bound', but is more speculative as it
depends on assumptions about the behavior of magnetic fields during
protogalactic collapse. For monopoles which do not overclose the Universe
(), the maximum flux allowed is now cm^{-2}
s^{-1} sr^{-1}, a factor of 150 lower than the maximum flux allowed by the
extended Parker bound.Comment: 9 pages, 1 eps figur
The ALFALFA "Almost Darks" Campaign: Pilot VLA HI Observations of Five High Mass-to-Light Ratio Systems
We present VLA HI spectral line imaging of 5 sources discovered by ALFALFA.
These targets are drawn from a larger sample of systems that were not uniquely
identified with optical counterparts during ALFALFA processing, and as such
have unusually high HI mass to light ratios. These candidate "Almost Dark"
objects fall into 4 categories: 1) objects with nearby HI neighbors that are
likely of tidal origin; 2) objects that appear to be part of a system of
multiple HI sources, but which may not be tidal in origin; 3) objects isolated
from nearby ALFALFA HI detections, but located near a gas-poor early-type
galaxy; 4) apparently isolated sources, with no object of coincident redshift
within ~400 kpc. Roughly 75% of the 200 objects without identified counterparts
in the .40 database (Haynes et al. 2011) fall into category 1. This
pilot sample contains the first five sources observed as part of a larger
effort to characterize HI sources with no readily identifiable optical
counterpart at single dish resolution. These objects span a range of HI mass
[7.41 < log(M) < 9.51] and HI mass to B-band luminosity ratios (3 <
M/L < 9). We compare the HI total intensity and velocity
fields to SDSS optical imaging and to archival GALEX UV imaging. Four of the
sources with uncertain or no optical counterpart in the ALFALFA data are
identified with low surface brightness optical counterparts in SDSS imaging
when compared with VLA HI intensity maps, and appear to be galaxies with clear
signs of ordered rotation. One source (AGC 208602) is likely tidal in nature.
We find no "dark galaxies" in this limited sample. The present observations
reveal complex sources with suppressed star formation, highlighting both the
observational difficulties and the necessity of synthesis follow-up
observations to understand these extreme objects. (abridged)Comment: Astronomical Journal, in pres
Real-Time Dynamic Imaging of Virus Distribution In Vivo
The distribution of viruses and gene therapy vectors is difficult to assess in a living organism. For instance, trafficking in murine models can usually only be assessed after sacrificing the animal for tissue sectioning or extraction. These assays are laborious requiring whole animal sectioning to ascertain tissue localization. They also obviate the ability to perform longitudinal or kinetic studies in one animal. To track viruses after systemic infection, we have labeled adenoviruses with a near-infrared (NIR) fluorophore and imaged these after intravenous injection in mice. Imaging was able to track and quantitate virus particles entering the jugular vein simultaneous with injection, appearing in the heart within 500 milliseconds, distributing in the bloodstream and throughout the animal within 7 seconds, and that the bulk of virus distribution was essentially complete within 3 minutes. These data provide the first in vivo real-time tracking of the rapid initial events of systemic virus infection
Semiclassical Equations for Weakly Inhomogeneous Cosmologies
The in-in effective action formalism is used to derive the semiclassical
correction to Einstein's equations due to a massless scalar quantum field
conformally coupled to small gravitational perturbations in spatially flat
cosmological models. The vacuum expectation value of the stress tensor of the
quantum field is directly derived from the renormalized in-in effective action.
The usual in-out effective action is also discussed and it is used to compute
the probability of particle creation. As one application, the stress tensor of
a scalar field around a static cosmic string is derived and the backreaction
effect on the gravitational field of the string is discussed.Comment: 35 pages, UAB-FT 316, Latex (uses a4wide.sty, a4.sty included in the
file)(replaced due to tex problems
- …