2,063 research outputs found

    Devising a fairer method for adjusting target scores in interrupted one-day international cricket

    Get PDF
    One-day international cricket matches face the problem of weather inter- ruption. In such circumstances, a so-called rain rule is used to decide the outcome. A variety of approaches for constructing such rules has been pro- posed, with the Duckworth-Lewis method being preferred in the sport. There are a number of issues to consider in reasoning about the e ↵ ectiveness of a rain rule, notably accuracy (does the rule make the right decision?) and fairness (are both teams treated equally?). We develop an approach that is a hybrid of resource-based and so-called probability-preserving approaches and provide empirical evidence that this hybrid method is superior in terms of fairness while competitive in terms of accuracy

    Changepoint detection in non-exchangeable data

    Get PDF
    Changepoint models typically assume the data within each segment are independent and identically distributed conditional on some parameters that change across segments. This construction may be inadequate when data are subject to local correlation patterns, often resulting in many more changepoints fitted than preferable. This article proposes a Bayesian changepoint model that relaxes the assumption of exchangeability within segments. The proposed model supposes data within a segment are m-dependent for some unknown m⊞0 that may vary between segments, resulting in a model suitable for detecting clear discontinuities in data that are subject to different local temporal correlations. The approach is suited to both continuous and discrete data. A novel reversible jump Markov chain Monte Carlo algorithm is proposed to sample from the model; in particular, a detailed analysis of the parameter space is exploited to build proposals for the orders of dependence. Two applications demonstrate the benefits of the proposed model: computer network monitoring via change detection in count data, and segmentation of financial time series

    Genomic diversity of Escherichia coli isolates from backyard chickens and guinea fowl in the Gambia

    Get PDF
    Chickens and guinea fowl are commonly reared in Gambian homes as affordable sources of protein. Using standard microbiological techniques, we obtained 68 caecal isolates of Escherichia coli from 10 chickens and 9 guinea fowl in rural Gambia. After Illumina whole-genome sequencing, 28 sequence types were detected in the isolates (4 of them novel), of which ST155 was the most common (22/68, 32 %). These strains span four of the eight main phylogroups of E. coli, with phylogroups B1 and A being most prevalent. Nearly a third of the isolates harboured at least one antimicrobial resistance gene, while most of the ST155 isolates (14/22, 64 %) encoded resistance to ≥3 classes of clinically relevant antibiotics, as well as putative virulence factors, suggesting pathogenic potential in humans. Furthermore, hierarchical clustering revealed that several Gambian poultry strains were closely related to isolates from humans. Although the ST155 lineage is common in poultry from Africa and South America, the Gambian ST155 isolates belong to a unique cgMLST cluster comprising closely related (38-39 alleles differences) isolates from poultry and livestock from sub-Saharan Africa - suggesting that strains can be exchanged between poultry and livestock in this setting. Continued surveillance of E. coli and other potential pathogens in rural backyard poultry from sub-Saharan Africa is warranted

    Prophylactic G-CSF in patients with early-stage breast cancer: a health economic review

    Get PDF
    Although the use of prophylactic granulocyte colony-stimulating factor (G-CSF) in conjunction with myelosuppressive chemotherapy is supported by clinical research evidence and advocated by international clinical guidelines when the consequent risk of febrile neutropenia exceeds 20%, there remains doubt as to the cost-effectiveness of the practice. There are limited economic data, and the data that are available are not necessarily applicable to the management of breast cancer in a European setting. Much of the available evidence on G-CSF in the management of febrile neutropenia is partial, focusing primarily on direct costs to the health service – that is, those related to hospitalisation and drug treatment. A full assessment of the cost effectiveness of G-CSF prophylaxis needs to take account of both costs and outcomes, including mortality, quality of life and patient functioning. As febrile neutropenia has been shown to affect productivity, consideration should also be given to quantifying the indirect costs of neutropenia

    Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress

    Get PDF
    Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (Ψpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-waterin

    Analysis of symmetries in models of multi-strain infections

    Get PDF
    In mathematical studies of the dynamics of multi-strain diseases caused by antigenically diverse pathogens, there is a substantial interest in analytical insights. Using the example of a generic model of multi-strain diseases with cross-immunity between strains, we show that a significant understanding of the stability of steady states and possible dynamical behaviours can be achieved when the symmetry of interactions between strains is taken into account. Techniques of equivariant bifurcation theory allow one to identify the type of possible symmetry-breaking Hopf bifurcation, as well as to classify different periodic solutions in terms of their spatial and temporal symmetries. The approach is also illustrated on other models of multi-strain diseases, where the same methodology provides a systematic understanding of bifurcation scenarios and periodic behaviours. The results of the analysis are quite generic, and have wider implications for understanding the dynamics of a large class of models of multi-strain diseases

    Canalization of the evolutionary trajectory of the human influenza virus

    Get PDF
    Since its emergence in 1968, influenza A (H3N2) has evolved extensively in genotype and antigenic phenotype. Antigenic evolution occurs in the context of a two-dimensional 'antigenic map', while genetic evolution shows a characteristic ladder-like genealogical tree. Here, we use a large-scale individual-based model to show that evolution in a Euclidean antigenic space provides a remarkable correspondence between model behavior and the epidemiological, antigenic, genealogical and geographic patterns observed in influenza virus. We find that evolution away from existing human immunity results in rapid population turnover in the influenza virus and that this population turnover occurs primarily along a single antigenic axis. Thus, selective dynamics induce a canalized evolutionary trajectory, in which the evolutionary fate of the influenza population is surprisingly repeatable and hence, in theory, predictable.Comment: 29 pages, 5 figures, 10 supporting figure
    • …
    corecore