91 research outputs found

    Posttranslational modifications of calcium/calmodulin-dependent protein kinase IIdelta and its downstream signaling in human failing hearts

    Get PDF
    BACKGROUND: In human failing hearts (HF) of different origin (coronary artery disease-CAD, dilated-DCM, restrictive and hypertrophic cardiomyopathy-OTHER), we investigated the active forms of Ca2+/calmodulin-dependent protein kinase IIdelta (p-Thr287-CaMKIIdelta, oxMet281/282-CaMKIIdelta) and their role in phenotypes of the disease. METHODS AND RESULTS: Although basic diagnostic and clinical markers indicating the attenuated cardiac contractility and remodeling were comparable in HF groups, CaMKIIdelta-mediated axis was different. P-Thr287-CaMKIIdelta was unaltered in CAD group, whereas it was upregulated in non-ischemic cardiomyopathic groups. No correlation between the upregulated p-Thr287-CaMKIIdelta and QT interval prolongation was detected. Unlike in DCM, oxMet281/282-CaMKIIdelta did not differ among HF groups. Independently of CaMKIIdelta phosphorylation/oxidation, activation of its downstreams-phospholamban and cardiac myosin binding protein-C was significantly downregulated supporting both diminished cardiac lusitropy and inotropy in all hearts. Content of sarcoplasmic reticulum Ca2+-ATPase 2a in all HF was unchanged. Protein phosphatase1beta was upregulated in CAD and DCM only, while 2A did not differ among groups. CONCLUSION: This is the first demonstration that the posttranslational activation of CaMKIIdelta differs in HF depending on etiology. Lower levels of downstream molecular targets of CaMKIIdelta do not correlate with either activation of CaMKIIdelta or the expression of major protein phosphatases in the HF. Thus, it is unlikely that these mechanisms exclusively underlie failing of the heart

    Interplay of Oxidative Stress and Necrosis-like Cell Death in Cardiac Ischemia/Reperfusion Injury:A Focus on Necroptosis

    Get PDF
    Extensive research work has been carried out to define the exact significance and contribution of regulated necrosis-like cell death program, such as necroptosis to cardiac ischemic injury. This cell damaging process plays a critical role in the pathomechanisms of myocardial infarction (MI) and post-infarction heart failure (HF). Accordingly, it has been documented that the modulation of key molecules of the canonical signaling pathway of necroptosis, involving receptor-interacting protein kinases (RIP1 and RIP3) as well as mixed lineage kinase domain-like pseudokinase (MLKL), elicit cardioprotective effects. This is evidenced by the reduction of the MI-induced infarct size, alleviation of myocardial dysfunction, and adverse cardiac remodeling. In addition to this molecular signaling of necroptosis, the non-canonical pathway, involving Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-mediated regulation of mitochondrial permeability transition pore (mPTP) opening, and phosphoglycerate mutase 5 (PGAM5)–dynamin-related protein 1 (Drp-1)-induced mitochondrial fission, has recently been linked to ischemic heart injury. Since MI and HF are characterized by an imbalance between reactive oxygen species production and degradation as well as the occurrence of necroptosis in the heart, it is likely that oxidative stress (OS) may be involved in the mechanisms of this cell death program for inducing cardiac damage. In this review, therefore, several observations from different studies are presented to support this paradigm linking cardiac OS, the canonical and non-canonical pathways of necroptosis, and ischemia-induced injury. It is concluded that a multiple therapeutic approach targeting some specific changes in OS and necroptosis may be beneficial in improving the treatment of ischemic heart disease

    Inhibition of Cardiac RIP3 Mitigates Early Reperfusion Injury and Calcium-Induced Mitochondrial Swelling without Altering Necroptotic Signalling

    Get PDF
    Receptor-interacting protein kinase 3 (RIP3) is a convergence point of multiple signalling pathways, including necroptosis, inflammation and oxidative stress; however, it is completely unknown whether it underlies acute myocardial ischemia/reperfusion (I/R) injury. Langendorff-perfused rat hearts subjected to 30 min ischemia followed by 10 min reperfusion exhibited compromised cardiac function which was not abrogated by pharmacological intervention of RIP3 inhibition. An immunoblotting analysis revealed that the detrimental effects of I/R were unlikely mediated by necroptotic cell death, since neither the canonical RIP3–MLKL pathway (mixed lineage kinase-like pseudokinase) nor the proposed non-canonical molecular axes involving CaMKIIδ–mPTP (calcium/calmodulin-dependent protein kinase IIδ–mitochondrial permeability transition pore), PGAM5–Drp1 (phosphoglycerate mutase 5–dynamin-related protein 1) and JNK–BNIP3 (c-Jun N-terminal kinase–BCL2-interacting protein 3) were activated. Similarly, we found no evidence of the involvement of NLRP3 inflammasome signalling (NOD-, LRR- and pyrin domain-containing protein 3) in such injury. RIP3 inhibition prevented the plasma membrane rupture and delayed mPTP opening which was associated with the modulation of xanthin oxidase (XO) and manganese superoxide dismutase (MnSOD). Taken together, this is the first study indicating that RIP3 regulates early reperfusion injury via oxidative stress- and mitochondrial activity-related effects, rather than cell loss due to necroptosis

    Quercetin alleviates diastolic dysfunction and suppresses adverse pro-hypertrophic signaling in diabetic rats

    Get PDF
    IntroductionQuercetin (Que) is a potent anti-inflammatory and antioxidant flavonoid with cardioprotective potential. However, very little is known about the signaling pathways and gene regulatory proteins Que may interfere with, especially in diabetic cardiomyopathy. Therefore, we aimed to study the potential cardioprotective effects of Que on the cardiac phenotype of type 2 diabetes mellitus (T2DM) accompanied by obesity.MethodsFor this experiment, we used Zucker Diabetic Fatty rats (fa/fa) and their age-matched lean controls (fa/+) that were treated with either vehicle or 20 mg/kg/day of Que for 6 weeks. Animals underwent echocardiographic (echo) examination before the first administration of Que and after 6 weeks. ResultsAfter the initial echo examination, the diabetic rats showed increased E/A ratio, a marker of left ventricular (LV) diastolic dysfunction, in comparison to the control group which was selectively reversed by Que. Following the echo analysis, Que reduced LV wall thickness and exhibited an opposite effect on LV luminal area. In support of these results, the total collagen content measured by hydroxyproline assay was decreased in the LVs of diabetic rats treated with Que. The follow-up immunoblot analysis of proteins conveying cardiac remodeling pathways revealed that Que was able to interfere with cardiac pro-hypertrophic signaling. In fact, Que reduced relative protein expression of pro-hypertrophic transcriptional factor MEF2 and its counter-regulator HDAC4 along with pSer246-HDAC4. Furthermore, Que showed potency to decrease GATA4 transcription factor, NFAT3 and calcineurin, as well as upstream extracellular signal-regulated kinase Erk5 which orchestrates several pro-hypertrophic pathways.DiscussionIn summary, we showed for the first time that Que ameliorated pro-hypertrophic signaling on the level of epigenetic regulation and targeted specific upstream pathways which provoked inhibition of pro-hypertrophic signals in ZDF rats. Moreover, Que mitigated T2DM and obesity-induced diastolic dysfunction, therefore, might represent an interesting target for future research on novel cardioprotective agents

    Consecutive isoproterenol and adenosine treatment confers marked protection against reperfusion injury in adult but not in immature heart:A role for glycogen

    Get PDF
    Consecutive treatment of adult rat heart with isoproterenol and adenosine (Iso/Aden), known to consecutively activate PKA/PKC signaling, is cardioprotective against ischemia and reperfusion (I/R). Whether this is cardioprotective in an immature heart is unknown. Langendorff–perfused hearts from adult and immature (60 and 14 days old) male Wistar rats were exposed to 30 min ischemia and 120 min reperfusion, with or without prior perfusion with 5 nM Iso for 3 min followed by 30 μM Aden for 5 min. Changes in hemodynamics (developed pressure and coronary flow) and cardiac injury (Lactate Dehydrogenase (LDH) release and infarct size) were measured. Additional hearts were used to measure glycogen content. Iso induced a similar inotropic response in both age groups. Treatment with Iso/Aden resulted in a significant reduction in time to the onset of ischemic contracture in both age groups whilst time to peak contracture was significantly shorter only in immature hearts. Upon reperfusion, the intervention reduced cardiac injury and functional impairment in adults with no protection of immature heart. Immature hearts have significantly less glycogen content compared to adult. This work shows that Iso/Aden perfusion confers protection in an adult heart but not in an immature heart. It is likely that metabolic differences including glycogen content contribute to this difference

    Hearts from Mice Fed a Non-Obesogenic High-Fat Diet Exhibit Changes in Their Oxidative State, Calcium and Mitochondria in Parallel with Increased Susceptibility to Reperfusion Injury

    Get PDF
    High-fat diet with obesity-associated co-morbidities triggers cardiac remodeling and renders the heart more vulnerable to ischemia/reperfusion injury. However, the effect of high-fat diet without obesity and associated co-morbidities is presently unknown.To characterize a non-obese mouse model of high-fat diet, assess the vulnerability of hearts to reperfusion injury and to investigate cardiac cellular remodeling in relation to the mechanism(s) underlying reperfusion injury.Feeding C57BL/6J male mice high-fat diet for 20 weeks did not induce obesity, diabetes, cardiac hypertrophy, cardiac dysfunction, atherosclerosis or cardiac apoptosis. However, isolated perfused hearts from mice fed high-fat diet were more vulnerable to reperfusion injury than those from mice fed normal diet. In isolated cardiomyocytes, high-fat diet was associated with higher diastolic intracellular Ca2+ concentration and greater damage to isolated cardiomyocytes following simulated ischemia/reperfusion. High-fat diet was also associated with changes in mitochondrial morphology and expression of some related proteins but not mitochondrial respiration or reactive oxygen species turnover rates. Proteomics, western blot and high-performance liquid chromatography techniques revealed that high-fat diet led to less cardiac oxidative stress, higher catalase expression and significant changes in expression of putative components of the mitochondrial permeability transition pore (mPTP). Inhibition of the mPTP conferred relatively more cardio-protection in the high-fat fed mice compared to normal diet.This study shows for the first time that high-fat diet, independent of obesity-induced co-morbidities, triggers changes in cardiac oxidative state, calcium handling and mitochondria which are likely to be responsible for increased vulnerability to cardiac insults

    Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection

    Get PDF
    The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment

    Interplay of Oxidative Stress and Necrosis-like Cell Death in Cardiac Ischemia/Reperfusion Injury: A Focus on Necroptosis

    No full text
    Extensive research work has been carried out to define the exact significance and contribution of regulated necrosis-like cell death program, such as necroptosis to cardiac ischemic injury. This cell damaging process plays a critical role in the pathomechanisms of myocardial infarction (MI) and post-infarction heart failure (HF). Accordingly, it has been documented that the modulation of key molecules of the canonical signaling pathway of necroptosis, involving receptor-interacting protein kinases (RIP1 and RIP3) as well as mixed lineage kinase domain-like pseudokinase (MLKL), elicit cardioprotective effects. This is evidenced by the reduction of the MI-induced infarct size, alleviation of myocardial dysfunction, and adverse cardiac remodeling. In addition to this molecular signaling of necroptosis, the non-canonical pathway, involving Ca2+/calmodulin-dependent protein kinase II (CaMKII)-mediated regulation of mitochondrial permeability transition pore (mPTP) opening, and phosphoglycerate mutase 5 (PGAM5)–dynamin-related protein 1 (Drp-1)-induced mitochondrial fission, has recently been linked to ischemic heart injury. Since MI and HF are characterized by an imbalance between reactive oxygen species production and degradation as well as the occurrence of necroptosis in the heart, it is likely that oxidative stress (OS) may be involved in the mechanisms of this cell death program for inducing cardiac damage. In this review, therefore, several observations from different studies are presented to support this paradigm linking cardiac OS, the canonical and non-canonical pathways of necroptosis, and ischemia-induced injury. It is concluded that a multiple therapeutic approach targeting some specific changes in OS and necroptosis may be beneficial in improving the treatment of ischemic heart disease
    corecore