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Abstract

Rationale: High-fat diet with obesity-associated co-morbidities triggers cardiac remodeling and renders the heart more
vulnerable to ischemia/reperfusion injury. However, the effect of high-fat diet without obesity and associated co-morbidities
is presently unknown.

Objectives: To characterize a non-obese mouse model of high-fat diet, assess the vulnerability of hearts to reperfusion
injury and to investigate cardiac cellular remodeling in relation to the mechanism(s) underlying reperfusion injury.

Methods and Results: Feeding C57BL/6J male mice high-fat diet for 20 weeks did not induce obesity, diabetes, cardiac
hypertrophy, cardiac dysfunction, atherosclerosis or cardiac apoptosis. However, isolated perfused hearts from mice fed
high-fat diet were more vulnerable to reperfusion injury than those from mice fed normal diet. In isolated cardiomyocytes,
high-fat diet was associated with higher diastolic intracellular Ca2+ concentration and greater damage to isolated
cardiomyocytes following simulated ischemia/reperfusion. High-fat diet was also associated with changes in mitochondrial
morphology and expression of some related proteins but not mitochondrial respiration or reactive oxygen species turnover
rates. Proteomics, western blot and high-performance liquid chromatography techniques revealed that high-fat diet led to
less cardiac oxidative stress, higher catalase expression and significant changes in expression of putative components of the
mitochondrial permeability transition pore (mPTP). Inhibition of the mPTP conferred relatively more cardio-protection in the
high-fat fed mice compared to normal diet.

Conclusions: This study shows for the first time that high-fat diet, independent of obesity-induced co-morbidities, triggers
changes in cardiac oxidative state, calcium handling and mitochondria which are likely to be responsible for increased
vulnerability to cardiac insults.
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Introduction

High-fat diet causes cardiac alterations which can be the result

of direct effects on the heart (e.g. by altering cardiac metabolism)

or indirectly as a result of obesity and associated pathologies (e.g.

diabetes, hypertension, cardiac hypertrophy, ischemia, fibrosis and

heart failure) [1–3]. Obesity triggers triglyceride accumulation and

the formation of pro-apoptotic ceramides within cardiomyocytes

which have been implicated in the impairment of contractile

dysfunction [4–7] and possibly causing insulin resistance [4].

Whether obesity induces changes in cardiac function varies

depending on the diet composition, duration of feeding and the

experimental model. Uncoupling of oxidative phosphorylation and

the production of reactive oxygen species (ROS) could combine to

induce contractile dysfunction [8] (reviewed in [3]) possibly by

alterations in Ca2+ cycling [9–11] and/or to lower ATP/oxygen

ratio associated with fatty acid oxidation [12]. In addition to
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changes in Ca2+ cycling, lipid accumulation, apoptosis, oxidative

stress and mitochondrial dysfunction are also potential contribu-

tors to contractile dysfunction [13]. Whether these changes are a

result of obesity and the related co-morbidities or directly due to

the high-fat diet has not been established. High-fat diet triggers

cardiac mitochondrial abnormalities (functional and structural)

under normal and pathological conditions [14,15] which includes

an increase in mitochondrial permeability transition pore (mPTP)

opening in interfibrillar mitochondria [16,17]. The latter could

explain why feeding rodents an obesity-generating high-fat diet

increases vulnerability of hearts to ischemia/reperfusion (I/R)

[18–20] whilst lipid-lowering drugs reduce the incidence of

ischemia-induced ventricular arrhythmias and decrease infarct

size after I/R [21,22]. Significant Ca2+ overload and oxidative

stress are triggers of reperfusion injury that lead to mPTP opening

[23,24]. Overall, it is evident that obesity-induced chronic and

complex metabolic, functional and structural changes in the heart

will render the myocardium more vulnerable to I/R injury. The

vulnerability is independent of whether the perfusate contains

lipids or not [25].

Experimental models used to investigate cardiac remodeling

associated with high-fat diet are either genetically altered or

employ wild-type animals fed high-fat diet. Genetic models

provide important information but they have their limitations

[26]. In the majority of wild-type animal models, rodents are fed

high-fat diet with fat caloric content ranging from 20% to 60%

[8,12,18,26–29]. A standard chow diet would normally contain fat

providing about 12% of total calories (,5% by weight).

Depending on its composition, high-fat diet can result in excessive,

moderate or little weight gain after weeks (or months) of feeding

(e.g. [8,12,15,26,27,29,30]). For example high-fat diet containing

high sucrose carbohydrates would induce excessive weight gain,

diabetes and cardiac dysfunction (e.g. [30–32]). Sucrose is critical

in triggering obesity and/or diabetic phenotype in rats in the

presence [33] or absence of high-fat diet [34]. Additionally, dietary

sucrose (compared to starch) is associated with obesity, insulin

insensitivity, hyperinsulinemia and higher serum lipid and glucose

levels [35,36]. Although excessive weight gain can cause hyper-

tension, the effect is very small in rodents where even obese mice

and rats have little or mild increase in blood pressure [27,28].

The C57BL/6 mouse strain is used as a model for studies of

diet-induced atherosclerosis and/or obesity and diabetes. These

mice become obese, hyperglycemic and insulin resistant when fed

certain types of high-fat diet (e.g. [27,32]) but do not gain extra

weight or show diabetic phenotype when fed high-fat atherogenic

diet (e.g. containing cholesterol and low sucrose) and become

susceptible to atherosclerotic lesion development after long periods

of feeding [30,37]. The overall aims of this research were to

characterize a non-obese mouse model fed high-fat diet and to

determine whether the associated cardiac remodeling of mecha-

nisms underlying I/R injury (oxidative stress, Ca2+ handling and

mPTP) can explain altered vulnerability of hearts and cardiomy-

ocytes to cardiac insults.

Methods

Animals and diet
Breeding, maintenance and feeding of C57BL/6J male mice as

well as weight monitoring and clinical chemistry were all carried

out at Charles River facilities (Charles River, Margate, Kent, UK).

The diet (see below) was delivered directly from the supplier to

Charles River. At the end of the feeding protocols, mice were

delivered and housed for a minimum period of one week at the

Animal Services Unit, University of Bristol. C57BL/6J male mice

were allocated to one of two feeding protocols. During the feeding

protocols the mice were given ad libitum access to food and water

and maintained on a 12 h light/dark cycle. Mice were fed

standard murine chow diet post weaning until 6 weeks of age. The

standard murine chow diet contained 13% calories from fat, 22%

calories from protein and 65% calories from carbohydrate (Special

Diets Services, UK, code: 801900; http://www.sdsdiets.com/

pdfs/VRF1-P.pdf). At 6 weeks of age they were either continued

on standard diet (normal diet mice) or switched to high-fat diet

(high-fat diet mice) for a further 20–21 weeks. The high-fat diet

consisted of 45% calories from fat, 18% calories from protein and

37% calories from carbohydrate (Special Diets Services, UK,

code: 821424). The high-fat diet also contained 0.17% calories

from cholesterol and low sucrose content. The dietary fat was from

lard and consisted of a mixture of saturated (44%) and mono-

(43%) and poly-unsaturated (13%) fatty acids. More details of

high-fat diet composition are shown in Table S1. The gross energy

for high-fat and normal diets was 19.67 and 16.54 kJ?g21,

respectively. Crude fat content (by weight) in different batches

ranged between 21–23%. This high-fat diet is known to promote

atherosclerosis in transgenic mice models without inducing

significant body weight gain [38–41].

Ethics Statement
Animal work was performed in accordance with the UK

Animals (Scientific Procedures) Act of 1986 and approved by the

University of Bristol Animal Welfare and Ethical Review Board

(Permit numbers: PPL 30/2859 and PIL 30/6547).

In vivo measurements
Clinical chemistry measurements. Tail vein blood was

taken from non-fasted mice and pooled (one pooled sample was

from three animals) to measure cholesterol, triglycerides and

glucose performed by Charles River (Margate, UK). An intra-

peritoneal insulin tolerance test (IPITT) was also performed on

animals from the two groups (approx. 25 weeks old). For this

purpose, blood glucose was measured from the tail vein of mice

that had been fasted for 4 h. Insulin was then administered by an

intra-peritoneal injection at a concentration of 1 IU?kg21 and

blood glucose was measured at 15, 30, 60 and 120 min post insulin

injection.

Echocardiography. 2-D echocardiography was performed

using a Vevo 770 High-Resolution In Vivo Imaging System

(VisualSonics, Canada) on mice one week before use for other

experiments (approx. 25 weeks old). Mice were anesthetized by

inhalation of isoflurane and kept warm using a heat pad set at

37uC. M-mode recordings of the hearts were taken using a

parasternal short axis view at the level of the papillary muscles. For

each heart at least five separate M-mode measurements were

taken. Following anesthesia mice were closely monitored until full

recovery was observed. Heart rates for the majority of anesthetized

mice were in the range of 400–475 bpm. Mice with heart rates

outside this range were excluded from the analysis.

Histology. Following a ventral midline thoracotomy, and

incision of the jugular veins, mice were perfused and fixed at

physiological pressure, via the left ventricle, with 10% formalin.

Tissue was excised and post-fixed in formalin for at least 16 h

prior to histological processing [42]. Sections were stained with

elastic van Gieson for morphology and identification of lesions in

aortic sinuses, coronary arteries and brachiocephalic arteries from

mice fed high-fat diet.

Non-Obesogenic High-Fat Diet and Cardiac Remodeling
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Experiments on isolated hearts
Langendorff perfusion. Hearts were excised from freshly

sacrificed mice, placed in ice cold Krebs-Henseleit buffer,

cannulated via the aorta onto a Langendorff system (ADInstru-

ments, UK) and perfused with 37uC Krebs-Henseleit buffer,

consisting of, in mM, 120 NaCl, 25 NaHCO3, 11 D-glucose

anhydrous, 1.2 KH2PO4, 1.2 MgSO4?7H2O, 4.8 KCl and 2

CaCl2. The buffer solution in the reservoirs was gassed with 95%

O2 and 5% CO2 (pH 7.4). Hearts were perfused with a constant

filling pressure of 60 mmHg and coronary flow monitored

throughout.

Ischemia/reperfusion protocol. The hearts were perfused

with Krebs-Henseleit buffer for a 30 min stabilization period,

followed by 40 min of no flow global ischemia and 120 min

reperfusion. For experiments using cyclosporin A (CsA) the drug

was present 10 min before ischemia and remained in the perfusate

until 20 min into reperfusion. The CsA was dissolved in DMSO

(1:10,000 final dilution) and added to the buffer at a concentration

of 0.2 mM. During the experiment hearts were bathed in 37uC
buffer and coronary flow rate and filling pressure were measured

by Chart 5 software (ADInstruments, UK).

Myocardial injury. Triphenyl tetrazolium chloride (TTC)

staining was used to determine the infarct size within the heart as

described previously [43]. Briefly, at the end of reperfusion hearts

were perfused with a 1% (w/v) TTC PBS solution for 10 min,

frozen and then cut into 5 equally sized transverse slices. Infarct

size was calculated using ImagePro Plus software (Media

Cybernetics, USA). In addition to cardiac injury, vascular

dysfunction was also monitored by comparing the extent of

recovery in coronary flow rate following I/R.

Western blotting. Ventricular tissue was collected from

freshly sacrificed mice or following I/R, snap frozen in liquid

nitrogen and stored at 280uC. Tissue was homogenized in 10 mL

radio-immunoprecipitation assay (RIPA) buffer per mg wet weight

and centrifuged at 10,0006g for 10 min at 4uC. Proteins in the

supernatant or mitochondrial proteins (10 mg) were separated

using SDS-polyacrylamide gel electrophoresis under reducing and

denaturing conditions and transferred to a 0.45 mm polyvinylidene

difluoride membrane. The membranes were blocked with tris-

buffered saline (TBS)-Tween, containing either 10% (w/v)

skimmed milk powder or 5% (w/v) BSA, before incubation

overnight (4uC) with a primary antibody diluted in TBS-Tween

containing 5% (w/v) BSA. Primary antibodies used included

phosphorylated (Ser473) Akt (1:2000, Cell Signaling), Akt (1:2000,

Cell Signaling), cleaved caspase 3 (CC3) (1:1000, Cell Signaling),

Bcl-2-associated X protein (BAX) (1:2000, Cell Signaling), B-cell

lymphoma-2 (Bcl-2) (1:2000, Cell Signaling), mitofusin 1 (Mfn-1)

(1:1000, Abcam), Mfn-2 (1:1000, Abcam), optic atrophy 1 (OPA1)

(1:10,000, Abcam), dynamin related protein 1 (DRP1) (1:1000,

Cell Signaling), phosphate carrier (PiC) (1:100,000, Sigma-

Genosys), voltage-dependent anion channel (VDAC) (1:4000, Cell

Signaling), cyclophilin D (CypD) (1:2000, Abcam), adenine

nucleotide transferase (ANT) (1:10,000, custom made (see [44])),

hexokinase II (1:1000, Cell Signaling), phosphorylated (Ser16)

phospholamban (P-PLN) (1:2000, Abcam), PLN (1:5000, Abcam)

and catalase (1:2000, Abcam). For whole heart tissue glyceralde-

hyde-3-phosphate dehydrogenase (GAPDH) was used as a loading

control (1:10,000, Cell Signaling) and for mitochondrial fractions

total protein blots were used. Blots were then incubated with an

appropriate horseradish peroxidase conjugated secondary anti-

body (1:10,000, GE Healthcare Life Sciences) and proteins were

visualized using the enhanced chemiluminescence system. Protein

bands were quantified by densitometry with ImageJ 1.46r

software.

Malondialdehyde assay. Cardiac malondialdehyde (MDA)

was measured using high-performance liquid chromatography

(HPLC) on a 4 mm Nova-Pak C18 column (150 mm63.9 mm)

(Waters, UK) as described elsewhere [45]. In brief, the extract was

prepared by adding 50 mL of 6 M NaOH to 250 mL of

0.8 mg?mL21 tissue sample diluted in RIPA buffer and incubated

at 60uC for 30 min. The protein was then precipitated with

125 mL of 35% (v/v) perchloric acid and the mixture was

centrifuged at 28006g for 10 min. 250 mL supernatant of each

standard and sample was mixed with 25 mL 2,4-dinitrophenylhy-

drazine (prepared as a 5 mM solution in 2 M HCl). This mixture

was incubated for 30 min at room temperature in the dark and

then centrifuged at 40006g for 5 min. 50 mL of standards and

samples were injected into the HPLC system. The mobile phase

was 12.4% (v/v) acetic acid and 38% (v/v) acetonitrile and was

perfused through the column at a flow rate of 0.6 mL?min21 at

room temperature. Chromatograms were acquired by measuring

absorbance at 310 nm.

Proteomics. Protein analysis was performed by the proteo-

mics facility, School of Medical Sciences, University of Bristol.

Isobaric Tandem Mass Tags (TMTs) (ThermoFisher Scientific,

UK) with an amine-reactive moiety were used for analysis of

protein expression in extracted cardiac tissue. Each sample was

initially digested with trypsin (0.025 mg?mg of protein21 at 37uC
overnight, Promega, UK) and then labelled with TMT sixplex

reagents according to the manufacturer’s protocol (Thermo

Scientific UK). The samples were then analyzed by reverse phase

nano-liquid chromatography mass spectrometry/mass spectrom-

etry using a LTQ-Orbitrap Velos mass spectrometer (Thermo

Scientific, UK). The peptide fragments released the isobaric tags

which were used to provide quantification of the peptides. The

peptides were searched against the UniProt/SwissProt mouse

database (81,998 entries) using the SEQUEST (Ver. 28 Rev. 13)

algorithm to determine the source protein. Protein quantitation

was the median value of peptide(s) identified from the same

protein. The peptides were analyzed using Thermo Proteome

Discoverer 1.2.0.208 software (ThermoFisher Scientific, UK) and

quantified proteins were recorded as a ratio to create fold change

against a standard sample (created by pooling an equal volume

from each sample) and normalized to GAPDH.

Electron microscopy. Hearts were excised from freshly sacri-

ficed mice, cannulated via the aorta and retrogradely perfused

with 37uC Krebs-Henseleit buffer, as in the Langendorff perfusion

section. The hearts were perfused for 5 min with buffer and then

for 2 min with the fixative solution at a rate of 1 mL?min21. The

fixative solution was made up of 0.1 M phosphate buffer

(22.5 mM NaH2PO4?2H2O and 76.76 mM Na2HPO4, pH 7.4)

with the following added to it: 0.5 mM CaCl2, 1.7 mM D-glucose

anhydrous, 1% (v/v) glutaraldehyde from a 25% stock solution

and 1% (w/v) paraformaldehyde. Subsequently, a ,2 mm slice

was taken after removing the apex of the heart. The heart slices

were stored overnight at 4uC in fixative solution. This was

followed by more washing and dehydration and the final part of

the fixation was to embed the tissue in EPON epoxy resin and

polymerize at 60uC for 48–72 h. Thick sections (2.5 mm) were cut

with a microtome (Leica, Germany) so that the cardiomyocytes

were orientated into a longitudinal plane. Thin sections (70 nm)

were cut and stained with uranyl acetate and lead citrate (94 mM

lead nitrate, 140 mM sodium citrate and 0.19 mM NaOH) and

viewed with a Tecnai 12 bioTWIN transmission electron

microscope (FEI, Netherlands) in the Wolfson Bioimaging Facility

at the University of Bristol. Images were taken with an Eagle

4K64K charged coupled device camera (FEI, Netherlands). From

the electron micrographs the area, lengths and density (mitochon-
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drial coverage of total myofilament area) of interfibrillar

mitochondria were measured using ImagePro Plus Version

6.2.0.424 software (Media Cybernetics, USA).

Experiments on isolated cardiomyocytes
Cardiomyocyte isolation. Ventricular cardiomyocytes were

isolated using collagenase (1 g?L21, type-1, Worthington Bio-

chemical Corporation, New Jersey, USA) and protease

(0.05 g?L21, type XIV, Sigma-Aldrich, Dorset, UK) digestion as

described previously [46]. The only modification was that the

perfusion speed was 2.3 mL?min21 and there was no CaCl2 in the

enzyme solution. Once digested, the ventricular tissue was

separated and mechanically dispersed by shaking at 37uC.

Cardiomyocytes were filtered and then the CaCl2 concentration

in the buffer was gradually increased to a final concentration of

1 mM.

Superfusion and stimulation of cardiomyocytes. Cardio-

myocytes were superfused at a rate of 1.3 mL?min21 with HEPES

buffer solution consisting of, in mM, 137 NaCl, 5 KCl, 1.2

MgSO4?7H2O, 1.2 NaH2PO4?2H2O, 20 HEPES, 15 D-glucose

anhydrous and 2 CaCl2 (pH 7.4) [47]. The microscope stage was

heated by a temperature controller so that the solution bathing the

cells was 32–33uC. The stimulation voltage was set at just above

the threshold required for the cell to beat.

Changes in cardiomyocyte morphology during metabolic

inhibition. Cardiomyocytes were initially superfused with

HEPES buffer solution and field stimulated at 0.2 Hz throughout

the protocol. The solution superfusing the cells was switched from

HEPES buffer to HEPES buffer containing 2 mM NaCN and no

glucose (metabolic inhibition) which has been shown to mimic the

effects of hypoxia [47,48]. After a period of metabolic inhibition

the cardiomyocyte goes into rigor. After 10 min in rigor, the

perfusion was switched back to HEPES buffer (reperfusion) for

10 min. Parameters such as time to stop beating, time to rigor and

contractile recovery after reperfusion were recorded.

Intracellular Ca2+ measurements. Isolated cardiomyocytes

were loaded with the fluorescent dye Fura-2 AM ester (Biotium

Inc., USA) at a concentration of 2 mM and gently shaken at 37uC
for 15 min. Loaded cardiomyocytes were superfused with HEPES

buffer, stimulated at different frequencies and the intracellular

Ca2+ concentrations ([Ca2+]i) were measured (for a representative

trace see Results section). The ratio of 340:380 was used as an

indication of [Ca2+]i. The excitation wavelengths were set so that

20 ratio measurements were taken per second. The excitation

dichroic mirror was 415 nm and the emission passed through a

510620 nm bandpass filter. The photomultiplier was connected

to Felix 32 Analysis version 1.2 software (Photon Technology

International, USA).

ROS turnover in a cardiomyocyte suspension. The

fluorescent dye 5-(and 6)-chloromethyl-29, 79-dichlorodihydro-

fluorescein diacetate (CM-H2DCFDA) (5 mM) (Life Technologies,

UK) was added to a cardiomyocyte suspension for 15 min at room

temperature. After loading, the solution was centrifuged at 1006g

for 1 min at room temperature and the cell pellet was resuspended

in HEPES buffer or HEPES buffer without glucose but

supplemented with 0.5 mM palmitate bound to 1% (w/v) fatty

acid free BSA, as described previously [49]. 200 mL aliquots of the

cardiomyocyte suspension were added to a 96-well plate, excited at

485 nm and fluorescence was detected at 520 nm using a

fluorescent plate reader (37uC) (FLUOstar Optima, BMG

Labtech, Germany).

Experiments on isolated mitochondria
Mitochondrial isolation. Two methods were used to isolate

mitochondria, a protease method and a Polytron method, as

described previously for rat heart mitochondria [50]. The protease

method was preferred as it yielded more mitochondria; however, if

outer mitochondrial membrane proteins were to be analyzed,

proteolytic cleavage of the proteins might occur and so the

Polytron method was used. Hearts were excised from freshly

sacrificed mice, cannulated via the aorta and perfused with

isolation buffer to wash out blood. The isolation buffer consisted of

300 mM sucrose, 10 mM Tris-HCl and 2 mM EGTA and the pH

was 7.2 at 4uC. For the Polytron method the isolation buffer was

supplemented with protease (cOmplete EDTA-free, Roche, UK)

and phosphatase (phosphatase inhibitor cocktail 3, Sigma, UK)

inhibitors. The centrifuge steps were carried out as in [50] with

density-gradient purification of mitochondria in 25% (v/v) Percoll.

Oxygen consumption rates in isolated cardiac

mitochondria. Mitochondria prepared with the protease meth-

od were used to determine the O2 consumption rates at 37uC
using a High-Resolution Respirometry Oxygraph-2K (Oroboros

Instruments, Austria), as described previously [51]. Mitochondria

(0.125 mg?mL21 final) were added to 2 mL of KCl buffer in the

chamber and the O2 consumption was recorded. The KCl buffer

contained, in mM, 125 KCl, 20 MOPS, 10 Tris, 0.01 EGTA, 2.5

KH2PO4, 2.5 MgCl2 and 2% (w/v) fatty acid free BSA. The buffer

was set to pH 7.1 at 37uC with KOH. The O2 consumption was

recorded in state 2 to assess basal respiration, state 3.5 thought to

mimic ATP turnover in vivo and state 3 respiration to assess

maximal respiration rates. To obtain state 2 respiration mito-

chondria (0.125 mg?mL21) were added to the chamber containing

the KCl buffer. For respiration linked to NADH oxidation 5 mM

pyruvate and 2.5 mM L-malate were added and for respiration

linked to fatty acid b-oxidation 10 mM palmitoylcarnitine was

added instead of pyruvate and the L-malate concentration was

reduced to 1 mM. When a steady state of O2 consumption was

reached a measurement of state 2 was taken. From the stable rate

the O2 consumption was determined in either state 3.5 or state 3.

For state 3.5 respiration 5 mM creatine, 40 mg creatine kinase and

400 mM ATP were added to the chamber. To obtain state 3

respiration 1.5 mM ADP was added. When the O2 consumption

again reached a stable rate 10 mM (final concentration) cyto-

chrome c was added to determine the amount of outer

mitochondrial membrane damage.

Hydrogen peroxide production by isolated cardiac

mitochondria. Mitochondria prepared using the protease

method were used to measure the rate of hydrogen peroxide

production in state 3.5 from respiration linked to NADH oxidation

and fatty acid b-oxidation (as above) and supplemented with

30 mM Amplex Red and 0.1 mg?mL21 peroxidase, as previously

described [51]. The samples were excited at 540 nm and emission

measured at 585 nm with a multi-plate fluorescent plate reader at

37uC (Flexstation plate reader, Molecular Devices, USA).

Hexokinase activity assay. Hexokinase assay was per-

formed on isolated mitochondria prepared using the Polytron

method, as described previously [50]. The lysis buffer contained

33 mM KH2PO4, 50 mM dithiothreitol, protease inhibitor (cOm-

plete, mini, EDTA-free protease inhibitor cocktail, Roche, UK)

and pH 7.2. The assay was performed at 37uC and the

mitochondria were diluted to 2 mg?mL21. The hexokinase buffer

consisted of 100 mM Tris-HCl (pH 7.4) containing 0.4 mM

NADP+, 10 mM MgCl2, 5 mM ATP and 0.3% (w/v) Triton X-

100. Mitochondria (40 mg or 80 mg) were added into a cuvette

containing 1 mL final volume of hexokinase buffer supplemented

with 0.5 units?mL21 glucose-6-phosphate dehydrogenase. The
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reaction was started after 2 min by addition of 1 mM glucose. For

one mole of glucose used by hexokinase there was one mole of

NADPH produced and therefore absorbance was recorded at

340 nm for 2 min with a spectrophotometer (Thermo Scientific,

UK).

Citrate synthase activity assay. Citrate synthase activity

assay was performed on isolated mitochondria prepared using the

Polytron method, as described previously [50]. The assay was

performed at 37uC and the mitochondria were diluted to

0.1 mg?mL-1 in lysis buffer, as above. The citrate synthase buffer

consisted of 50 mM Tris-HCl (pH 7.4), 150 mM DTNB, 0.3% (w/

v) Triton X-100 and pH 7.4. Mitochondria (2 mg or 4 mg) were

added to a cuvette containing 1 mL final volume of citrate

synthase buffer supplemented with 0.3 mM acetyl CoA. The

samples were incubated at 37uC for 2 min, a blank measurement

taken and then 0.5 mM oxaloacetate was added. Absorbance was

recorded at 412 nm for 2 min with a spectrophotometer (Thermo

Scientific, UK).

Data analysis
Data were analyzed using Prism 5 Version 5.01 software

(GraphPad, USA) and presented as mean6SEM where appro-

priate. Data were tested for normal distribution using the

Kolmogorov-Smirnov test and equal variance using the F-test.

Student’s t-test was performed on data that were normally

distributed and had equal variance. Student’s t-test with Welch’s

correction was performed on data that were normally distributed

but had unequal variance. The Mann-Whitney test was performed

on data that were not normally distributed. Fisher’s exact test was

used for categorical data. Two-way ANOVA with the Bonferroni

post-hoc test was used on data with two independent variables.

Statistical tests were performed as paired or unpaired where

appropriate. All statistical tests were performed as two-tailed and a

P-value less than 0.05 was assumed to be significantly different.

Results

Feeding C57BL/6J mice high-fat diet for 20 weeks resulted in

elevated blood cholesterol and triglycerides and was associated

with a small (,3%) but significant increase in body weight

compared to mice fed normal diet (Table 1). Most of the body

weight gain was accounted for in the increased epididymal fat pad

weights (Table 1).

The effect of high-fat diet on insulin resistance,
atherosclerosis, cardiac pump function, cardiac
hypertrophy and cardiac apoptosis

There was no evidence for a diabetic phenotype in the high-fat

diet group as shown by similar non-fasting blood glucose and

confirmed using an intra-peritoneal insulin tolerance test (Table 1).

Histological studies demonstrated that despite elevated blood lipids

the aortic sinus, brachiocephalic artery and coronary arteries had

no lesions even after longer periods of high-fat feeding (Figure S1

A–C). There were no signs of cardiac hypertrophy in the high-fat

diet group compared to the normal diet group as shown by wet

and dry heart weight to body weight ratios (Table 1). Echocar-

diographic measurements showed that cardiac pump function

(ejection fraction and fractional shortening) were similar for both

groups and no difference in the left ventricular mass (Figure S1 D–E

and Table 2).

There was no evidence for increased apoptosis in the high-fat

diet group as measured by pro- and anti-apoptotic protein levels

including Akt phosphorylation, cleaved-caspase 3, BAX and Bcl-2.

This was also confirmed by measuring BAX/Bcl-2 ratio and

mitochondrial BAX (Figure S2).

Overall, apart from high blood triglycerides and cholesterol

levels and increased epididymal fat deposits, mice fed high-fat diet

did not have obesity associated co-morbidities and had normal

cardiac pump function. As this diet does not induce marked body

weight and was not associated with any of the known obesity-

induced co-morbidities, we shall refer to it as non-obesogenic high-

fat diet.

The effect of non-obesogenic high-fat diet on
vulnerability of hearts to I/R

Hearts subjected to I/R had significantly more infarct volume

in the high-fat diet group compared to those in the normal diet

group, P,0.01 (Figure 1 A–B). The pre-ischemic flow rate values

were similar for both groups but significantly lower at the end of

reperfusion in the high-fat diet group compared to the normal diet

group, P,0.05 (Figure 1 C).

The effect of non-obesogenic high-fat diet on
vulnerability of cardiomyocytes to metabolic inhibition

Superfused cardiomyocytes isolated from mice fed high-fat diet

stopped beating and entered rigor during metabolic inhibition

(2 mM NaCN, substrate-free buffer) at earlier times compared to

cardiomyocytes from normal diet mice, P,0.001 (Figure 2 A-B).

Table 1. Characteristics of mice fed normal or high-fat diet.

Measurement Normal Diet High-Fat Diet

Body Weight (g) 31.260.2 (n = 158) 32.260.3 (n = 153)

Epididymal Fat Pad Weight (g) 0.5360.02 (n = 55) 1.1960.11*** (n = 34)

Blood Cholesterol (mM) 3.2560.20 (n = 4) 5.0660.52* (n = 4)

Blood Triglycerides (mg?dL21) 120615 (n = 4) 205626* (n = 4)

Non-Fasting blood Glucose (mM) 9.2660.64 (n = 4) 7.5460.72 (n = 4)

Area Under the IPITT Curve (mM?min) 13326149 (n = 6) 13496186 (n = 6)

Wet Heart Weight/Body Weight (%) 0.7060.13 (n = 55) 0.6860.20 (n = 34)

Dry Heart Weight/Body Weight (%) 0.10860.06 (n = 17) 0.10860.012 (n = 20)

IPITT = intra-peritoneal insulin tolerance test. Data are presented as mean6SEM. *** = P,0.001 and * = P,0.05 vs. normal diet. Numbers shown in parenthesis indicate
number of mice used except for cholesterol, triglycerides and glucose where n refers to number of measurements each containing a pool of 3 samples from 3 separate
mice.
doi:10.1371/journal.pone.0100579.t001
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Upon reperfusion, after 10 min in rigor, cardiomyocytes regained

beating (either beating or arrhythmic beating) quicker in the

normal diet group compared to high-fat diet, P,0.001 (Figure 2 C)

and regained full recovery (beating without arrhythmia) more often
than the cardiomyocytes isolated from mice fed high-fat diet, P,

0.01 (Figure 2 D).

The effect of non-obesogenic high-fat diet on oxidative
state and antioxidant proteins

Cardiac oxidative stress (MDA content) was significantly lower

in hearts from mice fed high-fat diet compared to hearts from

normal diet mice (5.0260.13 vs. 5.7060.14 nmol?mg wet

tissue21, respectively). There were only two antioxidant proteins

which had altered expression level in the high-fat diet group

compared to the normal diet group determined using proteomics:

catalase (increase) and mitochondrial superoxide dismutase 2

(SOD-2) (decrease), P,0.05 (Table 3).

The effect of non-obesogenic high-fat diet on ROS levels
in isolated cardiomyocytes and mitochondria

ROS turnover, as measured using the rate of DCF oxidation,

did not differ between the two groups when the cardiomyocytes

were incubated in HEPES buffer containing either glucose or

palmitate (Figure S3 A). Nor did hydrogen peroxide production

(measured using Amplex red) by isolated mitochondria in state 3.5

oxidizing pyruvate plus L-malate or palmitoylcarnitine plus L-

malate differ between the two groups (Figure S3 B).

The effect of non-obesogenic high-fat diet on oxygen
consumption by cardiac mitochondria in different
respiratory states

The rate of oxygen consumption fuelled by NADH from

pyruvate plus L-malate oxidation was similar for both groups

in all tested respiration states (Figure S4 A). The oxygen

consumption rates were also not different between the

normal and high-fat diet groups when comparing the b-oxidation

pathway using palmitoylcarnitine plus L-malate as substrates

(Figure S4 A). The respiratory control ratio (state 3/state 2) was

also not different between the normal and high-fat diet groups for

both sets of substrates (Figure S4 B).

The effect of non-obesogenic high-fat diet on
mitochondrial morphology

The mitochondria in the high-fat diet group were both smaller

in area and shorter in length, P,0.001 (Figure 3). The total

mitochondrial area, as a percentage of total myofilament area

(referred to as mitochondrial density), was decreased in the high-

fat diet group compared to the normal diet, P,0.05 (Figure 3).

The effect of non-obesogenic high-fat diet on
mitochondrial fusion and fission proteins

In response to the high-fat diet the expression of the fusion-

related proteins Mfn-2 and OPA1 were significantly increased and

decreased respectively, with no change in Mfn-1 expression but

an increased expression of the fission-related protein, DRP1

(Figure 4).

Table 2. Echocardiography measurements taken from mice anesthetized with isoflurane.

Measurement Normal Diet (n = 7) High-Fat Diet (n = 7)

Left Ventricular Mass (mg) 15267 13267

Ejection Fraction (%) 7561 7462

Fractional Shortening (%) 4361 4262

Data was obtained from M-mode echocardiographic images taken in parasternal short axis mode at the level of the papillary muscles. Data are presented as
mean6SEM. There was no statistical significance between the data.
doi:10.1371/journal.pone.0100579.t002

Figure 1. Markers of injury during I/R. A) Infarct volume quantified
from the heart slices stained with TTC. B) Representative heart slices
from the normal diet group and high-fat diet group. C) Flow rate
determined at different time points during the reperfusion phase.
Pre = pre-ischemia and grey hashed area = 40 min ischemia. Data are
presented as mean6SEM (n = 6-7 hearts). Data were analyzed using
Student’s t-test (A) and two-way repeated measures ANOVA with the
Bonferroni post-hoc test (C). ** = P,0.01 and * = P,0.05 vs. normal diet.
doi:10.1371/journal.pone.0100579.g001
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The effect of non-obesogenic high-fat diet on putative
mPTP proteins

Isolated cardiac mitochondria were assessed for the relative

expression of putative mPTP proteins using western blotting. In

the high-fat diet group there was a significant increase in the

relative protein expression of PiC and a decrease in VDAC

compared to the normal diet group, P,0.05 (Figure 5 A–B).

There was no change in both CypD and ANT in the high-fat diet

group compared to the normal diet group (Figure S5).

Figure 2. Cardiomyocyte observations and measurements during metabolic inhibition and reperfusion. Cardiomyocyte time to stop
beating (A) and time to the start of rigor (B) following metabolic inhibition (2 mM NaCN in the absence of substrates). C) Time between the start of
reperfusion and the resumption of contractile activity. D) Percentage of cardiomyocytes that had full recovery (beating without arrhythmia) following
a period of metabolic inhibition. Data are presented as mean6SEM (n$25 cardiomyocytes from at least 6 hearts). Data were analyzed using the
Mann-Whitney U test (A–C) and Fisher’s exact test (D). *** = P,0.001 and ** = P,0.01 vs. normal diet.
doi:10.1371/journal.pone.0100579.g002

Table 3. Antioxidant proteins determined using proteomics.

Protein (Accession number) Normal High-Fat Fold Change vs. Normal P-Value

Catalase (A2AL20) 0.7960.03 1.2260.13 1.54 0.02*

Isoform cytoplasmic & peroxisomal of Peroxiredoxin 5 (P99029-2) 1.0160.02 1.0260.03 1.00 0.91

Peroxiredoxin 1 (P35700) 1.0260.03 1.0760.01 1.05 0.13

Peroxiredoxin 2 (Q61171) 0.9960.02 1.0360.04 1.03 0.51

Peroxiredoxin 6 (D3Z0Y2) 0.9860.02 1.0160.02 1.03 0.32

SOD-1 (P08228) 1.1660.03 1.1560.05 0.99 0.91

SOD-2 (P09671) 1.1460.05 0.8960.06 0.78 0.02*

Thioredoxin-dependent peroxide reductase, mitochondrial (P20108) 0.9860.03 1.0360.01 1.05 0.13

Data are presented as mean6SEM (n = 4 hearts) and are relative to the pooled sample and normalized to GAPDH. Data were analyzed using Student’s t-test. * = P,0.05
vs. normal diet.
doi:10.1371/journal.pone.0100579.t003
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The effect of non-obesogenic high-fat diet on
mitochondrial hexokinase protein content and activity

There was less hexokinase II protein at the mitochondrial level

in the high-fat diet group compared to the normal diet group, P,

0.05 (Figure 5 C). The hexokinase activity at the mitochondrial

level was also significantly lower in the high-fat diet group

compared to the normal diet group, P,0.05 (Figure 5 D).

The effect of non-obesogenic high-fat diet on diastolic
intracellular Ca2+

The diastolic [Ca2+]i in isolated cardiomyocytes was elevated in

the high-fat diet group compared to the normal diet group at all

frequencies tested, P,0.05 (Figure 6 B). To consider the difference

at 0.2 Hz the diastolic [Ca2+]i was also presented as diastolic

[Ca2+]i with the 0.2 Hz [Ca2+]i subtracted. This showed that as

the frequency increased the difference between the normal diet

and high-fat diet became larger and became significant at 2.0 Hz

(Figure 6 C). The level of phospholamban phosphorylation (Ser16)

decreased in the high-fat diet compared to normal diet, P,0.05

(Figure 6 D).

The changes in catalase, MDA and the efficacy of CsA
during I/R

Cardiac oxidative stress (MDA content) significantly increased

at the end of I/R reaching similar levels for both hearts isolated

from mice fed normal or high-fat diet (Figure 7 A). However, the

relative change during I/R was more pronounced in the high-fat

diet compared to the normal diet (increased by 18% and 36%, for

normal and high-fat diet, respectively). In contrast, catalase

expression which was significantly higher in hearts from high-fat

diet did not change during I/R, whereas in the normal diet group

there was a doubling of catalase at the end of I/R compared to

basal levels, P,0.05 (Figure 7 B and S6).

CsA significantly decreased infarct size in the normal diet and

high-fat diet groups, P,0.001 (Figure 8 A–B). However the extent

of the protection was more marked for high-fat diet (from

69.161.3 to 40.362.1% infarct volume) compared to normal diet

(from 54.663.4 to 36.362.1% infarct volume). Finally, CsA did

not alter the recovery in flow rate in the normal diet group

whereas in the high-fat diet group the flow rate recovery after an

I/R protocol was significantly improved (Figure 8 C).

Discussion

The overwhelming majority of experimental studies investigat-

ing the effect of elevated plasma lipids on cardiac pump

remodeling have used models of obesity where cellular, functional

and structural cardiac changes can be attributed to obesity-

associated co-morbidities. Subsequently, the reported increase in

vulnerability to I/R of hearts from animals fed high-fat diet has

been explained in terms of obesity related effects (e.g. diabetes,

cardiac hypertrophy) as well as lipid-induced direct effects on the

heart. What has been lacking thus far is a model of hyperlipidemia

Figure 3. Representative electron micrographs of mitochondria and measurements. Representative electron micrographs from mice fed
normal diet (A) and high-fat diet (B). Individual mitochondrion area (C) and length (D) and mitochondrial coverage of myofilament area (E) assessed
using transmission electron micrographs. Data are presented as mean6SEM (n = 4 hearts and $900 mitochondria per heart from $10 electron
micrographs per heart). Data were analyzed using Mann Whitney U test (C–D) and Student’s t-test (E). *** = P,0.001 and * = P,0.05 vs. normal diet.
doi:10.1371/journal.pone.0100579.g003
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and hypercholesterolemia with no obesity to directly determine

lipid-induced cardiac remodeling in the context of vulnerability to

cardiac insults. In this study, we have shown for the first time that

high-fat diet, independent of obesity-induced co-morbidities,

increases the vulnerability of both isolated hearts and cardiomy-

ocytes to cardiac insults. Furthermore, high-fat diet triggered

cellular changes (raised [Ca2+]i, oxidative stress during I/R,

hexokinase II dissociation from the mitochondria and mitochon-

drial fragmentation) that can contribute to increased vulnerability

by altering mPTP opening during I/R.

A non-obese mouse model of hyperlipidemia and
hypercholesterolemia

In this study we characterized a mouse model of hyperlipidemia

and hypercholesterolemia that is not obese and does not show key

obesity-associated morbidities. The 20 week duration of high-fat

feeding was not sufficient to induce diabetes, coronary disease,

cardiac hypertrophy, apoptosis or alter cardiac pump function. In

this model the body weight increased by 3% whereas models of

obesity in mice see an increase in body weight to 40 g (30%

increase) or more [52,53]. This was achieved by feeding mice a

high-fat, very low sucrose diet for 20 weeks. Using high sucrose

instead of starch in normal or high-fat diet appears to be key in

triggering significant weight gain/obesity ([33] and see Introduc-

tion). Consistent with this is the original work by Surwit et al. [54]

showing significant obesity and diabetes in C57BL/6J mice using

disaccharides as the primary source of carbohydrate.

Increased vulnerability of hearts and cardiomyocytes to
cardiac insults

Isolated hearts and cardiomyocytes from mice fed high-fat diet

had increased vulnerability to cardiac insults compared to those

fed normal diet. This is similar to earlier studies on animals fed

high-fat diet causing obesity [18]. However, in this study the

triggers will be largely due to hyperlipidemia induced cardiac

cellular remodeling independent of obesity. The increased

vulnerability to I/R in our study is unlikely to be due to the

absence of fatty acids from the perfusate as an earlier study

demonstrated increased vulnerability even in the presence of an in

vivo circulating concentrations of lipids [25]. Myocardial I/R

injury, which can occur during clinical procedures such as

thrombolysis, angioplasty and coronary artery bypass graft

surgery, is triggered by significant Ca2+ overload and oxidative

stress that lead to mPTP opening [23,24]. High-fat diet has been

shown to induce oxidative stress [13] which may augment Ca2+

overload and I/R injury [55,56].

Figure 4. The relative cardiac protein expression of mitochondrial fusion and fission proteins determined using western blotting.
The fusion proteins were Mfn-1 (A), Mfn-2 (B) and OPA1 (C) and the fission protein was DRP1 (D). Protein bands were normalized to GAPDH. Data are
presented as mean6SEM (n = 6 hearts). Data were analyzed using Student’s t-test (A, B and D) and Student’s t-test with Welch’s correction (C).
*** = P,0.001 and * = P,0.05 vs. normal diet.
doi:10.1371/journal.pone.0100579.g004
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Non-obesogenic high-fat diet increases vulnerability to
oxidative stress during I/R

Cardiac oxidative stress and increased catalase levels are closely

linked to increased fat metabolism associated with high-fat diet

and obesity [57–59]. A surprising finding in this study was that

feeding mice non-obesogenic high-fat diet for 20 weeks actually

lowered the level of myocardial lipid peroxidation compared to

control. Decreased ROS in other tissues from high-fat feeding has

already been reported and has been attributed to increasing

proliferation of peroxisomes and thus catalase levels [60]. The

marked increase in cardiac catalase expression in our high-fat diet

model (nearly 5 fold, Figure 7) is likely to be responsible for the

relatively lower MDA levels. Apart from a fall in SOD-2 there was

no difference in the expression of other antioxidant enzymes

(Table 3).

Both lower cardiac MDA and higher catalase are expected to

render the heart more resistant to I/R injury. However, we found

hearts from high-fat diet mice were more vulnerable to I/R and

less able to cope with oxidative stress as shown by inability to

increase the levels of catalase compared to normal diet (Figure 7).

Thus it would appear that hearts of mice fed non-obesogenic high-

fat diet had already upregulated catalase in response to the diet

and therefore were not able to adapt to a further increase in

oxidative stress during I/R. In contrast, and because the basal

level of cardiac catalase was relatively low, hearts from normal diet

mice were able to increase catalase protein expression during I/R.

This work clearly suggests that elevated catalase prior to I/R is

only important if the levels of the enzyme can be further

augmented during the cardiac insult.

Non-obesogenic high-fat diet triggers mitochondrial
fragmentation and disruption to Ca2+ cycling

Myocardial mitochondria are a major source for ROS

production during I/R (reviewed in [61]) and any changes in

their structure and function during high-fat feeding might impact

on ROS production and vulnerability to I/R. Our data indicate

that despite changes to substrate supply in high-fat diet group,

isolated mitochondria retain the capacity to oxidize different

substrates to a similar level as control (Figure S4). These findings

are similar to those reported for high-fat diet induced obesity

models [62,63], although there are reports indicating differences in

oxygen consumption [64].

The interfibrillar mitochondria from mice fed a high-fat diet

were smaller, shorter and covered less myofilament area compared

to the normal diet group which is suggestive of mitochondrial

fission. However, the changes observed in fusion and fission

proteins did not present a clear picture of how this might be

achieved. Reduced OPA1 indicates fission although there are

reports suggesting less OPA1 increases the size of the mitochon-

dria [65]. Elevated Mfn-2 levels are also indicative of fission as

Figure 5. Relative cardiac protein expression of putative mitochondrial permeability transition pore components/regulators. PiC (A),
VDAC (B), mitochondrial hexokinase II protein (C) and mitochondrial hexokinase activity (D). Data are presented as mean6SEM (n = 5 mitochondrial
isolations). Data were analyzed using Student’s t-test with Welch’s correction (A) and Student’s t-test (B–D). * = P,0.05 vs. normal diet.
doi:10.1371/journal.pone.0100579.g005
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Figure 6. The diastolic intracellular Ca2+ concentration measured using Fura-2 AM fluorescence in isolated cardiomyocytes. A) An
example trace of Ca2+ transients using the Fura-2 fluorescent dye. The cell was stimulated at the frequencies indicated. B) Diastolic [Ca2+]i at different
frequencies in isolated cardiomyocytes. C) Diastolic [Ca2+]i with the 0.2 Hz diastolic [Ca2+]i subtracted. D) The relative phosphorylated
phospholamban (P-PLN Ser16) to phospholamban (PLN) protein expression ratio. Data are presented as mean6SEM (n = 29–32 cardiomyocytes
from 4 hearts (B–C) and 6 hearts (D)). Data were analyzed using two-way ANOVA with the Bonferroni post-hoc test (B–C) and Student’s t-test (D).
*** = P,0.001, ** = P,0.01 and * = P,0.05 vs. normal diet.
doi:10.1371/journal.pone.0100579.g006

Figure 7. Oxidative state during I/R. A) MDA measurements in unperfused heart tissue or hearts collected at the end of an I/R protocol analyzed
using HPLC. B) The relative catalase protein expression at basal level and after I/R determined using western blotting with all sample run on the same
membrane. Data are presented as mean6SEM (n = 5–6 hearts (A) and 3 hearts (B)). Data were analyzed using two-way ANOVA with the Bonferroni
post-hoc test (A). *** = P,0.001, ** = P,0.01, * = P,0.05 vs. basal, $$$ = P,0.001, $$ = P,0.01and $ = P,0.05 vs. normal diet.
doi:10.1371/journal.pone.0100579.g007
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Mfn-2 knockout mouse have been reported have larger and longer

mitochondria [66]. Mfn-2 is involved in tethering the endoplasmic

reticulum with the mitochondria [67] and this might create a pool

of higher concentration of Ca2+ around the mitochondria.

Elevated Ca2+ has been reported to recruit DRP1 to mitochondria

and induce fission [68] as well as making them more likely to

experience Ca2+ overload [69]. Consistent with this, cardiomyo-

cytes from the Mfn-2 knockout mice are more resistant to

simulated I/R [70]. It has been proposed that larger mitochondria

are able to accommodate Ca2+ loading better during I/R and

therefore reduce cell death [71] whilst mitochondrial fragmenta-

tion increases rate of ROS production [68,72]. Overall, the

increase in cardiac Mfn-2 in high-fat diet is consistent with

increased fission and vulnerability to I/R.

In addition to ROS generation, Ca2+ overload is also a key

determinant of I/R injury. Cardiomyocytes from high-fat diet had

higher diastolic [Ca2+]i compared to normal diet (Figure 6). The

finding that these hearts have reduced phosphorylated phospho-

lamban suggests that it may be impairment in sarcoplasmic

reticulum function that leads to higher levels of [Ca2+]i.

Generation of ROS has been implicated in Ca2+ handling defects

including depressed Ca2+ uptake by the sarcoplasmic reticulum

[73,74]. The impairment of coronary flow in the isolated hearts

during reperfusion in the high-fat diet group is likely to be a result

of increase in vascular resistance caused by increased contracture

(diastolic dysfunction). Diastolic dysfunction during reperfusion is

strongly linked to Ca2+ overload [75] which is likely to lead to a

raised mitochondrial Ca2+ content. Along with ROS production,

Ca2+ loading would render the mPTP more prone to opening

during I/R [76].

A role for the mitochondrial permeability transition pore
in increased vulnerability to I/R

Cardiac remodeling in response to high-fat diet indicates

changes that would increase mPTP opening. However, there

was also direct evidence showing significant changes in the

expression levels of mitochondrial proteins implicated as compo-

nents and regulators of the mPTP. High-fat diet reduced

mitochondrial hexokinase II activity and expression compared to

the normal diet group. Hexokinase II is a metabolic sensor and

therefore altering the diet would change the substrate supply

which could alter the localization of hexokinase II [77].

Mitochondrial hexokinase II content is important during I/R

injury as the amount at the end of ischemia negatively correlates

Figure 8. I/R injury in isolated hearts with and without the addition of 0.2 mM CsA. The CsA was added to the buffer 10 min before
ischemia and remained until 20 min after ischemia. A) Infarct volume quantified from the heart slices stained with TTC. B) Representative heart slices
from the normal diet and high-fat diet groups. C) The change in flow rate from pre-ischemia to the end of reperfusion. Data are presented as
mean6SEM (n = 5-6 hearts). Data were analyzed using two-way ANOVA with the Bonferroni post-hoc test. *** = P,0.001, ** = P,0.01 vs. normal diet,
$$$ = P,0.001 and $ = P,0.05 vs. CsA.
doi:10.1371/journal.pone.0100579.g008
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with infarct size [50]. The loss of mitochondrial hexokinase II is

thought to destabilize mitochondrial contact sites which induces

outer mitochondrial membrane permeability [50].

Key putative components of mPTP were also altered by high-fat

diet. There was a significant decrease in the expression of VDAC,

an increase in mitochondrial PiC but no change in CypD and

ANT. Not only does the PiC transport phosphate into the matrix

of the mitochondria where it can activate the mPTP; it has also

been proposed to be a component of the mPTP structure [76,78].

VDAC is the proposed binding site for hexokinase [79]. Therefore

a reduction in VDAC protein might be a reason for the decreased

amount of hexokinase II binding at the mitochondria. Whether

changes to the components of the mPTP would have an impact on

the amount of mPTP opening is not presently known. However,

opening of the mPTP can lead to further ROS production through

loss of cytochrome c and this can generate a positive feedback loop

of ROS formation and mPTP opening [51].

Our data are consistent with the proposal that feeding mice

non-obesogenic high-fat diet for a period of 20 weeks triggers

cardiac remodeling which increases the sensitivity of the mPTP to

open during I/R. This is consistent with CsA showing relatively

more efficacy in protecting the heart in high-fat diet group

compared to the normal diet group.

In conclusion, feeding mice non-obesogenic high-fat diet

increases the vulnerability of both isolated hearts and cardiomy-

ocytes to cardiac insults. A number of factors (raised [Ca2+]i,

oxidative stress during I/R, hexokinase II dissociation from the

mitochondria and mitochondrial fragmentation) in the high-fat

diet group can contribute to this effect possibly by altering mPTP

opening during I/R [50,76,80].

Supporting Information

Figure S1 Representative histology and echocardiogra-
phy images. Representative aortic sinus (A), brachiocephalic

artery (B) and coronary arteries (C) from mice fed high-fat diet.

Sections are stained with elastic van Gieson; purple = elastin and

red = connective tissue. Arrow head points to elastin. Scale

bars = 200 mm. Representative echocardiographic traces from

normal diet (D) and high-fat diet (E) mice. M-mode echocardio-

graphic measurements were taken in the parasternal short axis

view at the level of the papillary muscles.

(TIF)

Figure S2 The relative cardiac protein expression of
apoptotic markers determined using western blotting.
The relative protein expression of P-Akt (Ser473)/Akt ratio (A),

cleaved-caspase 3 (CC3) (B), mitochondrial BAX (C) and BAX/

Bcl-2 ratio (D) normalized to GAPDH or total protein blots. Data

are presented as mean6SEM (n = 5–6 hearts). Data were analyzed

using the Mann-Whitney U test (A–B and D) and Student’s t-test

(C). There was no statistical significance between the data.

(TIF)

Figure S3 Reactive oxygen species production in isolat-
ed cardiomyocytes and isolated mitochondria. A) DCF

fluorescence measurements in quiescent cardiomyocytes using

HEPES buffer containing either glucose or palmitate. B)

Hydrogen peroxide production in isolated cardiac mitochondria

using either pyruvate/L-malate (P/M) or palmitoylcarnitine/L-

malate (Pal-Car). Data are presented as mean6SEM (n = 5-7

isolations). Data were analyzed using the Mann-Whitney U test (A)

and Student’s t-test (B). There was no statistical significance

between the data.

(TIF)

Figure S4 Mitochondrial oxygen consumption in differ-
ent respiration states using different energy substrates.
Oxygen consumption was measured using an Oxygraph. A)

Oxygen consumption in state 2, state 3.5 and state 3. The

respiratory control ratio was calculated using the state 3:state 2

ratio (B). P/M = pyruvate/L-malate and Pal-Car = palmitoylcar-

nitine/L-malate. Data are presented as mean6SEM (n = 5

mitochondrial isolations). Data were analyzed using Student’s t-

test. There was no statistical significance between the data.

(TIF)

Figure S5 Relative cardiac protein expression of puta-
tive mitochondrial permeability transition pore compo-
nents/regulators determined using western blotting.
CypD (A) and ANT (B) normalized to total protein blots. Data

are presented as mean6SEM (n = 5 mitochondrial isolations).

Data were analyzed using Student’s t-test (A) and the Mann-

Whitney U test (B). There was no statistical significance between

the data.

(TIF)

Figure S6 The relative cardiac catalase protein levels at
the basal level and after I/R. Basal levels of catalase (A) and

catalase after I/R (B) normalized to GAPDH. Data are presented

as mean6SEM (n = 6 hearts). Data were analyzed using Student’s

t-test with Welch’s correction. *** = P,0.001 and * = P,0.05 vs.

normal diet.

(TIF)

Table S1 High-fat diet (Special Diets Services code:
821424) formulation and specification data for guidance.
(DOCX)
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