227 research outputs found
Coagulation activity of stored blood at +4°C
U ovom je radu ispitana koagulaciona aktivnost uskladištene krvi na +4°C. Primijenjeno je osam koagulacionih testova, a promjene koagulacione aktivnosti prikazane su grafički. Testiranje je izvršeno odmah nakon vađenja krvi, te drugi, sedmi i četrnaesti dan. Rezultati autora uspoređeni su s rezultatima iz literature.The coagulation activity of blood stored at 4°C was investigated. Eight different clotting tests were used. The changes in the coagulation activity are presented graphically. The testing was performed .immediately after the blood was taken from the vein and then after the first, seventh and forteenth day of storage. The authors compare their results with the data reported in literature. On each figure the time of storage in days is marked on the abscissa. The ordinate indicates the clotting time in sec. (Fig. 1), the prothrombin time in sec. (Fig. 2), the prothrombin consumption test in sec. (Fig. 3), the number of platelets x 10-3 (Fig. 4), the tromboplastin generation test, % activity (Fig. 5), the antihemophilic globulin % (Fig. 6), factor V activity % (Fig. 7), factor VII activity % (Fig. 8)
phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism
It is well accepted that lateral redistribution of the phytohormone auxin underlies the bending of plant organs towards light. In monocots, photoreception occurs at the shoot tip above the region of differential growth. Despite more than a century of research, it is still unresolved how light regulates auxin distribution and where this occurs in dicots. Here, we establish a system in Arabidopsis thaliana to study hypocotyl phototropism in the absence of developmental events associated with seedling photomorphogenesis. We show that auxin redistribution to the epidermal sites of action occurs at and above the hypocotyl apex, not at the elongation zone. Within this region, we identify the auxin efflux transporter ATP-BINDING CASSETTE B19 (ABCB19) as a substrate target for the photoreceptor kinase PHOTOTROPIN 1 (phot1). Heterologous expression and physiological analyses indicate that phosphorylation of ABCB19 by phot1 inhibits its efflux activity, thereby increasing auxin levels in and above the hypocotyl apex to halt vertical growth and prime lateral fluxes that are subsequently channeled to the elongation zone by PIN-FORMED 3 (PIN3). Together, these results provide new insights into the roles of ABCB19 and PIN3 in establishing phototropic curvatures and demonstrate that the proximity of light perception and differential phototropic growth is conserved in angiosperm
Implicating Calpain in Tau-Mediated Toxicity In Vivo
Alzheimer's disease and other related neurodegenerative disorders known as tauopathies are characterized by the accumulation of abnormally phosphorylated and aggregated forms of the microtubule-associated protein tau. Several laboratories have identified a 17 kD proteolytic fragment of tau in degenerating neurons and in numerous cell culture models that is generated by calpain cleavage and speculated to contribute to tau toxicity. In the current study, we employed a Drosophila tauopathy model to investigate the importance of calpain-mediated tau proteolysis in contributing to tau neurotoxicity in an animal model of human neurodegenerative disease. We found that mutations that disrupted endogenous calpainA or calpainB activity in transgenic flies suppressed tau toxicity. Expression of a calpain-resistant form of tau in Drosophila revealed that mutating the putative calpain cleavage sites that produce the 17 kD fragment was sufficient to abrogate tau toxicity in vivo. Furthermore, we found significant toxicity in the fly retina associated with expression of only the 17 kD tau fragment. Collectively, our data implicate calpain-mediated proteolysis of tau as an important pathway mediating tau neurotoxicity in vivo
Plastome-wide rearrangements and gene losses in carnivorous Droseraceae
The plastid genomes of four related carnivorous plants (Drosera regia, Drosera erythrorhiza, Aldrovanda vesiculosa and Dionaea muscipula) were sequenced to examine changes potentially induced by the transition to carnivory. The plastid genomes of the Droseraceae show multiple rearrangements, gene losses and large expansions or contractions of the inverted repeat. All the ndh genes are lost or non-functional, as well as in some of the species, clpP1, ycf1, ycf2 and some tRNA genes. Uniquely amongst land plants, the trnK gene has no intron. Carnivory in the Droseraceae coincides with changes in plastid gene content similar to those induced by parasitism and mycoheterotrophy, suggesting parallel changes in chloroplast function due to the similar switch from autotrophy to (mixo-) heterotrophy. A molecular phylogeny of the taxa based on all shared plastid genes indicates that the ‘snap-traps’ of Aldrovanda and Dionaea have a common origin
Deletion of Glucose Transporter GLUT8 in Mice Increases Locomotor Activity
Transport of glucose into neuronal cells is predominantly mediated by the glucose transporters GLUT1 and GLUT3. In addition, GLUT8 is expressed in some regions of the brain. By in situ hybridization we detected GLUT8-mRNA in hippocampus, thalamus, and cortex. However, its cellular and physiological function is still unknown. Thus, GLUT8 knockout (Slc2a8−/−) mice were used for a screening approach in the modified hole board (mHB) behavioral test to analyze the role of GLUT8 in the central nervous system. Slc2a8−/− mice showed increased mean velocity, total distance traveled and performed more turns in the mHB test. This hyperactivity of Slc2a8−/− mice was confirmed by monitoring locomotor activity in the home cage and voluntary activity in a running wheel. In addition, Slc2a8−/− mice showed increased arousal as indicated by elevated defecation, reduced latency to the first defecation and a tendency to altered grooming. Furthermore, the mHB test gave evidence that Slc2a8−/− mice exhibit a reduced risk assessment because they performed less rearings in an unprotected area and showed significantly reduced latency to stretched body posture. Our data suggest that behavioral alterations of Slc2a8−/− mice are due to dysfunctions in neuronal processes presumably as a consequence of defects in the glucose metabolism
Blocking Mineralocorticoid Receptors prior to Retrieval Reduces Contextual Fear Memory in Mice
BACKGROUND: Corticosteroid hormones regulate appraisal and consolidation of information via mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respectively. How activation of these receptors modulates retrieval of fearful information and the subsequent expression of fear is largely unknown. We tested here whether blockade of MRs or GRs during retrieval also affects subsequent expression of fear memory. METHODOLOGY/PRINCIPAL FINDINGS: Mice were trained in contextual or tone cue fear conditioning paradigms, by pairing mild foot shocks with a particular context or tone respectively. Twenty-four hours after training, context-conditioned animals were re-exposed to the context for 3 or 30 minutes (day 2); tone-conditioned animals were placed in a different context and re-exposed to one or six tones. Twenty-four hours (day 3) and one month later, freezing behavior to the aversive context/tone was scored again. MR or GR blockade was achieved by giving spironolactone or RU486 subcutaneously one hour before retrieval on day 2. Spironolactone administered prior to brief context re-exposure reduced freezing behavior during retrieval and 24 hours later, but not one month later. Administration of spironolactone without retrieval of the context or immediately after retrieval on day 2 did not reduce freezing on day 3. Re-exposure to the context for 30 minutes on day 2 significantly reduced freezing on day 3 and one month later, but freezing was not further reduced by spironolactone. Administration of spironolactone prior to tone-cue re-exposure on day 2 did not affect freezing behavior. Treatment with RU486 prior to re-exposure did not affect context or tone-cue fear memories at any time point. CONCLUSIONS/SIGNIFICANCE: We conclude that MR blockade prior to retrieval strongly reduces the expression of contextual fear, implying that MRs, rather than GRs, play an important role in retrieval of emotional information and subsequent fear expression
- …