7,393 research outputs found

    Modelling strong interactions and longitudinally polarized vector boson scattering

    Get PDF
    We study scattering of the electroweak gauge bosons in 5D warped models. Within two different models we determine the precise manner in which the Higgs boson and the vector resonances ensure the unitarity of longitudinal vector boson scattering. We identify three separate scales that determine the dynamics of the scattering process in all cases. For a quite general background geometry of 5D, these scales can be linked to a simple functional of the warp factor. The models smoothly interpolate between a `composite' Higgs limit and a Higgsless limit. By holographic arguments, these models provide an effective description of vector boson scattering in 4D models with a strongly coupled electroweak breaking sector.Comment: 30 pages, no figure

    In silico analysis of sequenced strains of Clostridium difficile reveals a related set of conjugative transposons carrying a variety of accessory genes

    Get PDF
    The human gut pathogen Clostridium difficile contains many conjugative transposons that have an array of accessory genes. In the current study, recently sequenced genomes were analyzed to identify new putative conjugative transposons. Eleven new elements in 5 C. difficile strains were identified and all had a similar structure to the previously described elements CTn1, CTn5 and CTn7 in C. difficile strain 630. Each element identified did however contain a new set of accessory genes compared with those previously reported; including those predicted to encode ABC transporters, a toxin/antitoxin system and multiple antibiotic resistance genes

    Mosaic tetracycline resistance genes encoding ribosomal protection proteins

    Get PDF
    First reported in 2003, mosaic tetracycline resistance genes are a subgroup of the genes encoding ribosomal protection proteins (RPPs). They are formed when two or more RPP-encoding genes recombine resulting in a functional chimera. To date, the majority of mosaic genes are derived from sections of three RPP genes, tet(O), tet(W) and tet(32), with others comprising tet(M) and tet(S). In this first review of mosaic genes, we report on their structure, diversity and prevalence, and suggest that these genes may be responsible for an under-reported contribution to tetracycline resistance in bacteria

    Restricted processing of CD16a/Fc Îł receptor IIIa N-glycans from primary human NK cells impacts structure and function

    Get PDF
    CD16a/Fc γ receptor IIIa is the most abundant antibody Fc receptor expressed on human natural killer (NK) cells and activates a protective cytotoxic response following engagement with antibody clustered on the surface of a pathogen or diseased tissue. Therapeutic monoclonal antibodies (mAbs) with greater Fc-mediated affinity for CD16a show superior therapeutic outcome; however, one significant factor that promotes antibody–CD16a interactions, the asparagine-linked carbohydrates (N-glycans), remains undefined. Here, we purified CD16a from the primary NK cells of three donors and identified a large proportion of hybrid (22%) and oligomannose N-glycans (23%). These proportions indicated restricted N-glycan processing and were unlike those of the recombinant CD16a forms, which have predominantly complex-type N-glycans (82%). Tethering recombinant CD16a to the membrane by including the transmembrane and intracellular domains and via coexpression with the Fc ϵ receptor γ–chain in HEK293F cells was expected to produce N-glycoforms similar to NK cell–derived CD16a but yielded N-glycoforms different from NK cell–derived CD16a and recombinant soluble CD16a. Of note, these differences in CD16a N-glycan composition affected antibody binding: CD16a with oligomannose N-glycans bound IgG1 Fc with 12-fold greater affinity than did CD16a having primarily complex-type and highly branched N-glycans. The changes in binding activity mirrored changes in NMR spectra of the two CD16a glycoforms, indicating that CD16a glycan composition also affects the glycoprotein\u27s structure. These results indicated that CD16a from primary human NK cells is compositionally, and likely also functionally, distinct from commonly used recombinant forms. Furthermore, our study provides critical evidence that cell lineage determines CD16a N-glycan composition and antibody-binding affinity

    Chirally symmetric quark description of low energy \pi-\pi scattering

    Get PDF
    Weinberg's theorem for \pi-\pi scattering, including the Adler zero at threshold in the chiral limit, is analytically proved for microscopic quark models that preserve chiral symmetry. Implementing Ward-Takahashi identities, the isospin 0 and 2 scattering lengths are derived in exact agreement with Weinberg's low energy results. Our proof applies to alternative quark formulations including the Hamiltonian and Euclidean space Dyson-Schwinger approaches. Finally, the threshold \pi-\pi scattering amplitudes are calculated using the Dyson-Schwinger equations in the rainbow-ladder truncation, confirming the formal derivation.Comment: 10 pages, 7 figures, Revtex

    Specific neural correlates of successful learning and adaptation during social exchanges

    Get PDF
    Cooperation and betrayal are universal features of social interactions, and knowing who to trust is vital in human society. Previous studies have identified brain regions engaged by decision making during social encounters, but the mechanisms supporting modification of future behaviour by utilizing social experience are not well characterized. Using functional magnetic resonance imaging (fMRI), we show that cooperation and betrayal during social exchanges elicit specific patterns of neural activity associated with future behaviour. Unanticipated cooperation leads to greater behavioural adaptation than unexpected betrayal, and is signalled by specific neural responses in the striatum and midbrain. Neural responses to betrayal and willingness to trust novel partners both decrease as the number of individuals encountered during repeated social encounters increases. We propose that, as social groups increase in size, uncooperative or untrustworthy behaviour becomes progressively less surprising, with cooperation becoming increasingly important as a stimulus for social learning. Effects on reputation of non-trusting decisions may also act to drive pro-social behaviour. Our findings characterize the dynamic neural processes underlying social adaptation, and suggest that the brain is optimized to cooperate with trustworthy partners, rather than avoiding those who might betray us

    Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder

    Get PDF
    Objectives - Antimicrobial resistance (AMR) in clinically relevant bacteria is a growing threat to public health globally. In these bacteria, antimicrobial resistance genes are often associated with mobile genetic elements (MGEs), which promote their mobility, enabling them to rapidly spread throughout a bacterial community. Methods - The tool MobileElementFinder was developed to enable rapid detection of MGEs and their genetic context in assembled sequence data. MGEs are detected based on sequence similarity to a database of 4452 known elements augmented with annotation of resistance genes, virulence factors and detection of plasmids. Results - MobileElementFinder was applied to analyse the mobilome of 1725 sequenced Salmonella enterica isolates of animal origin from Denmark, Germany and the USA. We found that the MGEs were seemingly conserved according to multilocus ST and not restricted to either the host or the country of origin. Moreover, we identified putative translocatable units for specific aminoglycoside, sulphonamide and tetracycline genes. Several putative composite transposons were predicted that could mobilize, among others, AMR, metal resistance and phosphodiesterase genes associated with macrophage survivability. This is, to our knowledge, the first time the phosphodiesterase-like pdeL has been found to be potentially mobilized into S. enterica. Conclusions - MobileElementFinder is a powerful tool to study the epidemiology of MGEs in a large number of genome sequences and to determine the potential for genomic plasticity of bacteria. This web service provides a convenient method of detecting MGEs in assembled sequence data. MobileElementFinder can be accessed at https://cge.cbs.dtu.dk/services/MobileElementFinder/

    Histotripsy Erosion of Model Urinary Calculi

    Full text link
    Background and Purpose: Histotripsy is a pulsed focused ultrasound technology in which initiation and control of acoustic cavitation allow for precise mechanical fractionation of tissues. The present study examines the feasibility of using histotripsy for erosion of urinary calculi. Materials and Methods: Histotripsy treatment was delivered from a 750-kHz transducer in the form of 5-cycle acoustic pulses at a 1-kHz pulse repetition frequency. Model stones were sonicated for 5 minutes at peak negative pressures (p-) of 10, 15, 19, 22, and 24-MPa. Resulting fragment sizes and comminution rates were assessed and compared with those achieved with a piezoelectric lithotripter (Wolf Piezolith 3000) operated at 2-Hz pulse repetition frequency and power level 17 (p- = 14-MPa). Results: Histotripsy eroded the surface of stones producing fine (<100--m) particulate debris in contrast to the progressive and incomplete subdivision of stones achieved with piezoelectric lithotripsy. The histotripsy erosion rate increased with increasing peak negative pressure from 10 to 19-MPa and then saturated, yielding an average rate of 87.9+/-12.8 mg/min at maximum treatment intensity. Piezoelectric lithotripsy achieved an average treatment rate of 110.7+/-27.4 mg/min. Conclusions: Histotripsy comminution of urinary calculi is a surface erosion phenomenon that is mechanistically distinct from conventional shockwave lithotripsy (SWL), producing only fine debris as opposed to coarse fragments. These characteristics suggest that histotripsy offers a potential adjunct to traditional SWL procedures, and synergistic interplay of the two modalities may lead to possible increases in both rate and degree of stone fragmentation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90440/1/end-2E2010-2E0407.pd
    • …
    corecore