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Cooperation and betrayal are universal features of social interactions, and knowing who to trust is vital in human society. Previous studies have
identified brain regions engaged by decision making during social encounters, but the mechanisms supporting modification of future behaviour by
utilizing social experience are not well characterized. Using functional magnetic resonance imaging (fMRI), we show that cooperation and betrayal
during social exchanges elicit specific patterns of neural activity associated with future behaviour. Unanticipated cooperation leads to greater behav-
ioural adaptation than unexpected betrayal, and is signalled by specific neural responses in the striatum and midbrain. Neural responses to betrayal and
willingness to trust novel partners both decrease as the number of individuals encountered during repeated social encounters increases. We propose
that, as social groups increase in size, uncooperative or untrustworthy behaviour becomes progressively less surprising, with cooperation becoming
increasingly important as a stimulus for social learning. Effects on reputation of non-trusting decisions may also act to drive pro-social behaviour. Our
findings characterize the dynamic neural processes underlying social adaptation, and suggest that the brain is optimized to cooperate with trustworthy
partners, rather than avoiding those who might betray us.
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INTRODUCTION

Social interaction is among the most complex and fundamental of

human behaviours. Optimal decision making in social contexts is cru-

cially dependent on the actions of others (Rilling et al., 2008).

Cooperation typically benefits all parties in a social interaction, and

there is evidence for evolutionary advantages to pro-social preferences

(Axelrod, 1984; Gintis, 2000; Hay, 2009). However, cooperation with

social partners who act selfishly may result in gains for the uncoopera-

tive partner at a cost to the cooperator. Therefore, appropriate social

decision making requires us to build a dynamic representation of the

mental state and likely actions of those with both partners with whom

we are interacting for the first time, and those who have previously

been encountered. Successfully selecting those social partners who will

reciprocate trust and cooperate is crucial to success.

A widely used model of decision making in the course of social

interaction is the ‘Trust Game’, a sequential reciprocal exchange para-

digm (McCabe et al., 2001). One partner acts as the investor, choosing

whether or not to transfer some of their money to another (the trus-

tee). If a transfer is made, the amount is multiplied and the trustee

chooses either to cooperate and return a proportion of the money, or

to betray the investor and keep everything.

Previous imaging studies have used the trust game as a paradigm to

investigate neural activity that is associated with decision making by

investors (Delgado et al., 2005; King-Casas et al., 2005; Singer et al.,

2006; Tomlin et al., 2006) and trustees (King-Casas et al., 2005; Tomlin

et al., 2006), anticipation of trustee responses by investors (McCabe

et al., 2001), feedback of the trustee responses to investors (De

Quervain et al., 2004; Phan et al., 2010) and decisions to punish

uncooperative partners (De Quervain et al., 2004). Decision making

during trust games leads to engagement of brain regions associated

with reward processing, conflict resolution and representation of

mental states. Neural responses to partners may be modulated by ex-

pectations of a partner’s trustworthiness, based on explicit information

about reputation (Delgado et al., 2005), or previous experience of their

actual behaviour (Singer et al., 2006; Krueger et al., 2007; Chang et al.,

2010; Phan et al., 2010).

Decision making by investors in the trust game relies upon model-

ling the expected actions of a trustee based on the available informa-

tion. In the absence of information about a trustee’s previous

behaviour or reputation, trust decisions are influenced by implicit ex-

pectations. Partners whose faces are judged as ‘trustworthy’ attract

greater investment, even if they are no more likely to cooperate

(van’t Wout and Sanfey, 2008). Experience gained during encounters

with partners interacts with expectations of their behaviour, such that

there is modulation of neural processing when experience differs from

the expected outcome. These modulatory effects may reflect signalling

of prediction errors, directly or indirectly, neural signals which support

learning and modification of future behaviour in response to outcomes

(Schultz et al., 1997; O’Doherty et al., 2003a, 2004). Regional neural

activity during trust exchanges may also reflect strategic effects. For

example, pairs of subjects alternating as investors and trustees in a trust

game may show regional neural activity reflecting whether subjects

develop a strategy based upon ‘unconditional’ or ‘conditional’ trust,

dependent on initial expectations of mutual cooperation or

self-interest, respectively (Krueger et al., 2007).

While previous studies have examined neural activity associated

with generating and updating representations of a social partner,

they have not addressed how that neural activity translates to subse-

quent modifications in behaviour. The ability to learn from social ex-

perience, to dynamically update representations of partners, and adjust

behaviour appropriately during future encounters, is fundamental to

successful social interaction.

We were interested in determining how the brain engages in the

process of updating expectations and partner representations during

social exchanges. We typically lack explicit information about whether

to trust another individual when we first encounter them. To optimize
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our long-term outcomes, we must learn from making incorrect deci-

sions and update our representations of individuals to guide choices

made on future encounters. While the standard trust game paradigm

results in an outcome which can allow learning when the investor

partner does trust the other partner (i.e. trust is reciprocated or be-

trayed), one cannot learn from the trials when the investor decided not

to trust. However, not engaging with trustworthy partners can lead to

opportunities lost as may be evident, for example, when a rival takes

advantage by trusting the partner we rejected and realizing the rewards

which we have passed up. The value of investing trust in others, even

when such a choice may appear risky, is reflected in the enduring fables

of such encounters, such as that of Androcles, who removed a thorn

from a lion’s paw, ultimately resulting in him being saved by the lion

from execution in the arena in Rome. We aimed to determine first how

the brain learns from errors made during social decision making, and

applies this learning to future encounters with particular social part-

ners, and secondly whether this learning differed when decisions re-

sulted in betrayal and loss compared with missed opportunities with

trustworthy partners.

Our study employed a simultaneous move, repeated trust game with

a large number of different social partners. During their first encounter

with each partner, subjects could use only implicit information to

judge whether or not to trust each partner. Following this, the inten-

tions of the trustees were revealed, such that subjects could learn from

all types of encounter, those with positive (gain, or avoidance of loss)

and negative (betrayed trust and loss, or missed opportunity) out-

comes. We predicted that effective learning from social encounters

would rely upon brain regions associated with reward processing

and associative learning, and that there would be valence-specific dif-

ferences in neural activity, reflecting partially dissociable mechanisms

for learning from actual and potential losses during social encounters.

METHODS

Participants

Twenty-seven healthy, right-handed females participated in the experi-

ment. Two were excluded due to excessive movement artefact, and one

due to error in recording behavioural data. The remaining twenty-four

participants had a mean age of 20.8 years (range 18–25 years). We used

female participants, and photographs of females representing playing

partners, to avoid potential inter-gender effects on social interaction.

All participants gave informed consent, according to the Declaration of

Helsinki, and the study was approved by the Research Ethics

Committee at University College London.

Experimental design

We used functional magnetic resonance imaging (fMRI) to determine

how neural responses to partners’ actions related to changes in future

behaviour. Subjects acted as the investor partner in two series of trust

games with different trustees represented by full-face photographs

(Figure 1). In the first series, all trustee partners were novel, while in

the second two-thirds of partners had been encountered previously,

allowing subjects to use past experience of those individuals to guide

decision making. In each game, investors could choose either to trust

their partner, risking reward or loss, or to not trust them and avoid

these risks. Whether or not subjects decided to invest, they were always

informed of the other partner’s actual or intended response.

We focussed on neural responses to the four possible outcomes in

the first series of trust games (Figure 2). These outcomes were: subject

trusts, partner cooperates (expected cooperation, EC); subject trusts,

partner betrays (unexpected betrayal, UB); subject does not trust but

partner would have cooperated (unexpected cooperation, UC); does

not trust but partner would have betrayed (expected betrayal, EB). We

examined how neural activity elicited by particular outcomes related to

future trust decisions with individual partners. We also investigated

changes in neural responses over the course of the experiment.

Participants played the role of the investor partner. They were given

an initial endowment of 200 points to use during the games, which

were subsequently converted to a monetary reward. In each game, they

would have the option to invest 10 points with their partner, or to keep

their own points. If they did invest, the trustee partner would either

return 20 points, or keep the invested points. If participants kept their

points, they could not gain or lose, but were informed of what their

partners actions would have been had they invested.

The trustee partners were represented by colour photographs of emo-

tionally neutral female faces (adapted from the Aberdeen set from the

Psychological Image Collection at Stirling http://pics.psych.stir.ac.uk).

These were scored for emotionality and trustworthiness during a pilot

study, and photographs whose ratings deviated significantly from neu-

tral on either scale were removed from the stimulus set. Each photo-

graph represented either a cooperative or uncooperative partner, while

across subjects, the assignment of a particular photograph to trustee

type was counterbalanced, to obviate specific influences of particular

faces on behaviour or neural responses. Overall, each participant en-

countered 50% cooperative and 50% uncooperative partners.

Stimulus presentation and acquisition of behavioural responses were

implemented using the Cogent 2000 (Wellcome Department of

Imaging Neuroscience, UCL, London, UK) toolbox for Matlab (The

Mathworks Inc.). Stimuli were viewed via a mirror mounted on the

MRI head coil, allowing visualization of a projector screen, and sub-

jects responded via a custom-built button box held in the right hand.

The sequence of events during each trust game is shown in Figure 1.

Participants first saw the photograph representing the trustee partner,

and had 4 s to indicate whether or not they would invest. After a brief

jittered delay of 0.5–2.5 s, they were shown the same partner and in-

formed of their response. This outcome image was shown for 7 s,

before presentation of a fixation cross for 0.5–2.5 s.

During the first scanning session, participants played 48 trust games

with novel partners. In a second series 72 trust games were played, one-

third (24 partners) of the trustees were novel, and two-thirds (48 part-

ners) had been seen previously. The previously encountered partners

always responded in the same manner as they had on first encounter,

although this was not explicitly stated to the participants. A third

scanning session consisted of a control task during which participants

did not make trust judgements, but performed a recognition memory

task on photographs of female faces, some of which were new and

some of which had been seen during the trust games. During this

recognition task, subjects were randomly assigned to invest or not

with partners, independent of their recognition judgement.

After the experiment, participants points were totalled and con-

verted at a rate of 20 points¼ £1. This was added to a £5 ‘show up

fee’ to determine their total payout.

fMRI data acquisition

Data were acquired using a Siemens 1.5T Avanto MR scanner and a

32-channel head coil (Siemens, Erlangen, Germany). We acquired

high-resolution T1-weighted structural images (1 mm� 1 mm�

1 mm) and T2*-weighted echo-planar images (40 slices,

2 mm� 2 mm� 2 mm voxels, repetition time (TR)¼ 3.6 s, field of

view (FOV)¼ 192 mm� 192 mm, slice gap¼ 1 mm). In order to

reduce signal dropout in anterior medial temporal lobe, orbitofrontal

cortex (OFC) and ventro-medial prefrontal cortex (VMPFC), each

image was acquired with an oblique orientation of 308 relative to the

anterior–posterior commissure axis, and with a reversed pre-pulse.

This followed comparison of regional signal recovery on our MRI
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system in a pilot group of subjects using the approach described by

Weiskopf et al. (2006).

Behavioural data analysis

For each subject, data were analysed according to the outcomes experi-

enced by participants when interacting with a particular trustee (see

Figure 2 for decision tree). A linear mixed effects model was used to

investigate the impact of round, previous choice with a partner, pre-

vious response from a partner and the interaction of previous choice

and response on the likelihood of investing with old partners when

encountering them again in round two. This was supplemented by post

hoc paired t-tests between investment probabilities for different sub-

groups of old partners according to round one outcome and with new

partners. Identical analysis methods were used to compare reaction

times for trust judgements, and accuracy of recognition memory.

fMRI analysis

fMRI data were pre-processed and analysed using SPM8 (Wellcome

Department of Imaging Neuroscience, UCL, London, UK). After the

first two volumes were discarded to account for equilibration effects,

images were realigned to the first volume to correct for subject motion,

normalized to the Montreal Neurological Institute EPI template with a

voxel size of 3 mm� 3 mm� 3 mm and smoothed with a Gaussian

kernel (8 mm full-width at half maximum). A high pass filter of

128 s was applied.

Following pre-processing, parameters of a general-linear model in

each subject were estimated to generate voxel-wise statistical paramet-

ric maps. For each subject we modelled activity associated with the

four possible outcomes in the first series of trust games�EC, EB, UC

and UB (Figure 2). EC, EB, UC and UB parameters were subdivided

according to whether subjects subsequently adapted their trust

Fig. 2 Decision tree showing the structure for defining outcomes in each trust game. Deciding to trust a partner and invest points could lead either to reciprocation (EC) or betrayal (UB). After a decision to
keep points it could be revealed that partners would have cooperated (UC) or would have betrayed (EB) (A). For partners where the first trust judgement led to an unexpected outcome (UB or UC), trials were
subdivided according to whether investors subsequently adapted their behaviour when playing a second trust game with the same partner (B).

Fig. 1 Stimuli and timing in the trust game.
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behaviour appropriately (þ) or did not (�), following feedback from

their decision on their first encounter with a social partner.

Comparison of trials subsequently eliciting adaptation or not was

taken as an index of encoding of social information, analogous to

the approach used in subsequent memory paradigms (Fernandez

et al., 1999; Otten et al., 2001).

The main regressors of interest were modelled as mini-boxcar func-

tions of 7 s duration, aiming to capture both immediate and delayed

neural activity associating the outcome with individual partners.

Additional regressors were estimated for the trust decision phases

(modelled as event ‘stick’ functions) and parametric modulators of

the change in outcome responses over time (utilizing trial number as

the parametric modulator and convolving these function with the out-

come mini-boxcar functions). These regressors were convolved with a

canonical haemodynamic response function and were included in a

design matrix, together with regressors generated from the realignment

parameters, to correct for residual subject motion.

Parameter estimates for each subject were taken from this analysis

and entered into a random effects (between-subjects) second-level ana-

lysis, and linear contrasts used to identify brain regions with differen-

tial responses according to outcome, those associated with changes in

future behaviour and change in response over time. Statistical para-

metric maps were reported at a significance threshold of P < 0.001,

with cluster threshold correction identifying only clusters of at least

five contiguous voxels. These were plotted on the average of subjects’

anatomical images for structural localization. Contrasts were inclu-

sively masked with the averaged grey matter masks from each subjects,

acquired from segmentation during image pre-processing. Where sig-

nificant effects were revealed, these were quantified by extracting aver-

age parameter estimates from the activated cluster in each individual

and plotting the mean of these across subjects. To assess whether pat-

terns of neural activity were common between contrasts, we used in-

clusive masking, which reveals effects that are significant across

multiple contrasts, at a threshold of P < 0.005.

RESULTS

Behaviour

During the first series of trust games, subjects played only with novel

partners. They chose to invest in 56% of the encounters with partners

who would subsequently reciprocate trust and 53% of partners who

would subsequently betray them (Table 1, panel a). The overall pro-

portion of outcomes experienced in the first series of trust games were:

EC 0.28, UC 0.22, EB 0.24 and UB 0.26. The difference in proportion

of outcomes experienced did not reach significance across subjects

[F(2.08, 47.8)¼ 2.74, P¼ 0.073].

Social learning was indexed by changes in behavioural responses

during the trust games, and how these varied according to the

nature of previous encounters with playing partners.

In the second round, decisions to invest with particular partners

were significantly influenced by previous partner response

[F(1,138)¼ 7.38; P¼ 0.007], indicating that subjects were more likely

to invest with those previously encountered partners who had indi-

cated willingness to cooperate. Subjects were more likely to repeat their

investment choice from series one than to change it in series two

{probability 0.56 vs 0.44 [F(1,138)¼ 26.7; P < 0.001}. There was also

a significant interaction between previous choice and previous re-

sponse [F(1,138)¼ 6.01, P¼ 0.015]. This interaction reflected a differ-

ence in modifying investment behaviour with partners who had

previously been cooperative or uncooperative (Table 1, panel a;

Figure 3). Partners who had previously been cooperative were more

likely to attract investment in the second series of trust games than

were new partners, regardless of whether the previous cooperation had

been expected [EC; investment probability 0.66 vs new partners in

second series 0.42; t(23)¼ 3.00, P¼ 0.006] or unexpected [UC; invest-

ment probability 0.64 vs new 0.42; t(23)¼ 3.07; P¼ 0.005].

Similarly, where partners had previously shown that they would

have betrayed the investor, and this was consistent with expectations

in series one (EB) they were less likely to attract investment in series

two [investment probability 0.31 vs new 0.42; t(23)¼ 2.15; P¼ 0.042].

In contrast, partners who had previously unexpectedly betrayed trust

(UB) were no less likely to attract investment than new partners [in-

vestment probability 0.54 vs new 0.42; t(23)¼ 1.48; P¼ 0.15], and

indeed the trend was towards a higher rate of investment with partners

who had previously unexpectedly betrayed trust than with new

partners.

The finding that subjects appeared to show less appropriate adap-

tion of behaviour with partners who unexpectedly betrayed them in

series one than they did for other outcomes, was not explained by

differences in facial recognition memory. There was no significant

effect of series one outcome on recognition memory for the faces of

the partners in a subsequent recognition memory test [F(2.68,

61.6)¼ 0.26, P¼ 0.835] (Table 1, panel b). There were no significant

differences in reaction times for either trust judgements or recognition

memory according to the player’s prior decision, or the outcome of

that decision in round one.

The differences in subsequent investment behaviour, which ap-

peared to show reduced adaptation following UB in round one, com-

pared with other outcomes, implies that investors learned less

effectively from UB than from cooperation. There are a number of

possible explanations for this finding. The apparent difference in

adaptation might simply result from a response bias towards investing

during the second series of trust games. However, the overall propor-

tion of ‘invest’ vs ‘keep’ decisions in the second series of trust games

showed no such bias. The respective proportions with old partners did

not differ significantly [0.52 invest vs 0.48 keep, t(23)¼ 0.84, P¼ 0.41]

although there was a distinct bias towards untrusting behaviour with

new partners [0.38 vs 0.62, t(23)¼ 2.75, P¼ 0.01], arguing against a

simple response bias explanation. Interestingly, during the first round

of encounters, subjects were more likely than not to invest with part-

ners about whom they had no prior information, while this tendency

decreased over time and there was a bias towards untrusting behaviour

with new partners by the end of the experiment (Figure 3B). This

suggests that there was an initial bias towards investing but that sub-

jects became progressively less trusting over the course of the experi-

ment as group size increased, with new partner investment rates falling

substantially below the group reciprocation rate of 0.5. The observed

differences in subsequent behaviour may then either reflect differences

in initial expectations of cooperative or uncooperative behaviour, or

some intrinsic difference in how subjects learned from different types

of partner responses.

fMRI

Neural responses to outcomes, following investment decisions in series

one, differentiated between expected vs unexpected partner responses

(i.e. between EC and EB, contrasted with UC, and UB). This contrast

highlighted greater activity in the right ventral striatum [12 voxels,

peak MNI coordinates (18, 17,� 5) Z¼ 3.39, P < 0.001 uncorrected;

Figure 4A] in response to trustee actions corresponding to investor

expectations. No brain region showed significantly greater overall ac-

tivity following unexpected vs expected outcomes.

Our primary aim was to determine how neural activity encoded

successful social learning and behavioural adaptation. We focussed

on how neural activity in response to the outcome of a trust deci-

sion with a particular partner in series one related to what trust
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decision would be made when encountering that partner again in series

two. Social learning could be indexed by either repeating a correct

response (e.g. investing again with a partner who had previously reci-

procated), suggesting that the initial response had reinforced the be-

haviour, or by changing responses following an unexpected outcome.

To determine regional activity associated with reinforcement of re-

sponses, we subdivided trials where there was EC in series one into

ECþ (series two, participant invested again, suggesting reinforcement

of the investment response) and EC� (series two, participant did not

invest, no evidence of reinforcement) (Figure 2). Similarly, EB trials

were subdivided into EBþ (series two, participant again chose not to

invest, suggesting reinforcement) and EB� (series two, participant in-

vested, no evidence of reinforcement). Overall contrast of reinforced vs

non-reinforced trials did not show any significant differences in re-

gional neural responses. However, contrasting only ECþ with EC�

trials showed that successful reinforcement following EC was asso-

ciated with increased regional activity in the right ventral striatum

[5 voxels, peak MNI coordinates (9, 20, �8) Z¼ 3.50, P < 0.001 un-

corrected] and mid-frontal gyrus [17 voxels, peak MNI coordinates

(39, 23, 31) Z¼ 4.86]. Inclusive masking of this ‘reinforcement effect’

from reciprocated cooperation and the previously reported contrast of

effects of positive vs negative outcomes, thresholded at P < 0.005,

revealed an overlap between effects in the right ventral striatum

[4 voxels, peak MNI coordinates (18, 14, �5) Z¼ 3.17; Figure 4B].

There were no significant effects revealed by the contrast of

EBþ vs EB�.

We used a similar approach to examine neural responses associated

with successful vs unsuccessful behavioural adaptation in series two

following unexpected outcomes in series one (Figure 2). UC in

round one was subdivided into UCþ (series two, participant invested,

reflecting an appropriate adaptive response to UC) and UC– (series

two, participant again chose not to invest; no evidence of adaptation).

Similarly, UB was subdivided into UBþ trials (series two, did not

invest, implying successful adaptation) and UB� (invested during

series two despite previous betrayal; no evidence of adaptation).

Appropriate behavioural adaptation in the second series of trust

games was associated with specific neural responses to unexpected out-

comes in the first series of games. Brain regions in which these adap-

tation effects were evident included dorsal striatum, anterior cingulate

cortex (ACC), right dorsolateral prefrontal cortex (DLPFC), left OFC

and the midbrain in the region of the substantia nigra (Table 2).

Regional analysis of parameter estimates revealed that activity in

some brain areas, notably the midbrain, was only associated with suc-

cessful vs unsuccessful adaptation following UC trials. Other regional

neural activity, such as that in dorsal ACC, was associated with suc-

cessful adaptation following both UC and UB by trustee partners

Fig. 3 Behavioural outcomes in the trust game. (A) Probability (�s.e.m.) of investing with old and new partners during the first (R1_N) and second (R2_N) series of trust games. Old partners are divided
according to their outcome in the first round (EC, UB, UC, EB). EC and UC partners attracted a higher level of investment, and EB a lower level of investment than new partners. (B) The change in probability of
investing with new partners (black bars: round 1, grey bars: round 2) and the mean cumulative probability (solid line) of investing with ‘New’ partners as the number of partners increased over the experiment.
The dashed line shows the division between the first and second round of trust games.

Table 1. Probability of investment with old and new partners in the trust game (top line), and accuracy of recognition memory in the control task (bottom line)

Old partners New partners

EC UB UC EB Round 1 Round 2

C B C B

Likelihood of investment, Mean (s.e.) 0.66 (0.05) 0.54 (0.05) 0.64 (0.04) 0.31 (0.04) 0.56 (0.02) 0.53 (0.03) 0.43 (0.04) 0.40 (0.04)
Recognition, Mean (s.e.) 0.80 (0.04) 0.78 (0.04) 0.79 (0.05) 0.82 (0.04) 0.90 (0.09)

Responses with old partners are divided according to previous outcome. Responses with new partners are divided according to round and subsequent partner response (C, cooperation, B, betrayal).

Neural adaptation in social exchanges SCAN (2012) 5 of10

 at U
niversitÃ

©
 de G

enÃ
¨ve on January 16, 2013

http://scan.oxfordjournals.org/
D

ow
nloaded from

 

http://scan.oxfordjournals.org/


(Figure 5). Crucially, these ‘adaptation effects’ demonstrate differential

activity during a first social encounter associated with particular be-

havioural choices made subsequently with that same social partner.

In order to determine whether the adaptation effects in some brain

regions were elicited only by either cooperative or uncooperative part-

ners, we compared overall neural responses with UC and UB outcomes

from the first series of trust games.

UC vs UB elicited greater neural activity in several areas (Table 2).

Inclusive masking revealed that these valence-specific cooperation ef-

fects overlapped with adaptation effects in dorsal striatum and the

midbrain. No brain regions showed significantly greater responses to

UB compared with cooperation.

We also analysed whether the neural responses to UC or betrayal

changed over the course of the experiment. Given the behavioural

evidence for decreasing trust in new partners as the group size

increased, we hypothesized that betrayal by a new partner might be

progressively less surprising, and cooperation more surprising, and

that this would be reflected in differences in neural responses to

these outcomes. We predicted that neural responses in some brain

regions supporting adaptation might show modulation as more new

partners were encountered.

As group size increased, anterior and posterior cingulate, right para-

hippocampal gyrus, right lateral OFC and left superior frontal gyrus

showed relatively decreased responses to UB compared with UC out-

comes (Table 2, Figure 6). In parahippocampal gyrus and OFC, these

modulatory effects were co-localized with the regional neural activity

associated with successful adaptation. We suggest that decreasing

neural responses to betrayal, in regions associated with effective adap-

tation of behaviour, may contribute to an impaired ability to learn

from UB. One possibility is that as enlarging group size predisposes

investors to be less trusting of new partners, the degree of expectation

violation caused by betrayal decreases, with a corresponding reduction

in learning. No brain regions showed significant increases in activity

over the experiment for UB compared with cooperation. We also dir-

ectly tested whether restricting the comparison of activity elicited by

UB vs UC revealed significant effects when only the first 50% of trials

were included in the analysis, again without significant regional in-

creases in activity associated with UB.

DISCUSSION

How do we learn and remember who to trust among a huge number of

potential social partners? Our findings reveal how effective social learn-

ing and behavioural adaptation in a repeated social reciprocation para-

digm is associated with specific patterns of neural activity. In this task,

we show evidence for greater effectiveness of learning and adaptation

following a social interaction that elicits UC than one which results in

UB, and we identify corresponding dissociations in patterns of neural

activity.

In this experiment, we found that subjects were equally likely to

recognize faces of partners who had reciprocated trust during their

Fig. 4 Activity in ventral striatum showing increased bold signal following successful outcomes during social encounters in the first round of trust games (A) and reinforcement of investment behaviour
following reciprocation (B). Parameter estimates (�s.e.m.) are shown for EC, UB, UC, EB. For (B), EC is shown according to whether there was evidence of subsequent reinforcement (ECþ) or not (EC�) in the
second round of games. Images shown at uncorrected threshold P < 0.001.
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first encounter as they were the faces of those who had betrayed

them. However, when the same partners were encountered during a

second trust game, the likelihood that the decision to trust them would

change appropriately from the first encounter depended critically

on whether that partner had been unexpectedly trustworthy or

untrustworthy. Appropriate behavioural change was significantly

more likely following UC.

A number of possible mechanisms to explain the differences in

observed adaptation exist, and previous studies have identified better

explicit memory for cooperative than uncooperative partners’ actions

(Singer et al., 2004). However, other studies (e.g. Mealey et al., 1996)

have suggested that uncooperative ‘cheat’ partners are more salient

than ‘fair’ players, and there is evidence that partners do tend to de-

crease their rate of investment with uncooperative players in repeated

trust games (e.g. Baumgartner et al., 2008). It is notable that recent

study of memory for ‘fair’ and ‘unfair’ players in a social ‘ultimatum

game’ showed no specific advantage for either group, but revealed that

subjects who expected their partner to be fair had improved memory

for unfair players, while those who had low expectations remembered

fair or generous players better (Chang and Sanfey, 2009). These find-

ings suggest that expectation violation may be a key influence upon

learning from social encounters.

Over the course of the present experiment, we observed that subjects

had a decreasing willingness to trust new ‘stranger’ partners, despite

the fact that there was no change in the likelihood of trustees engaging

in untrustworthy behaviour. Previous studies have predicted that co-

operative behaviour tends to develop more easily in small, compared

with large, groups (Boyd and Richerson, 1988; Barta et al., 2011;

Takezawa and Price, 2010). We hypothesize that, as the experiment

progressed, the increasing group size of potential investment partners

may have served to promote a prior expectation that ‘strangers are

likely to be untrustworthy’, and resulted in a strategic shift in behav-

iour to avoid investment with them. Under these circumstances, reci-

procated trust by a novel partner becomes less and less expected, and

therefore is more salient, as the degree of expectation violation in-

creases. This increased salience could be the explanation for the

observed difference in adaptive behaviour, which focused on investing

with those who had reciprocated trust, rather than avoiding those who

were known to be untrustworthy.

An alternate possibility is that the initial tendency to investment in

round one reflects an expected investment probability of greater than

Fig. 5 Brain regions associated with successful adaptation of behaviour following unexpected outcome in a trust game. Contrast of outcomes leading to successful adaptation compared with no adaptation
revealed effects in the brainstem (circled, A), dorsal caudate (B) and anterior cingulate cortex (C). Parameter estimates (�s.e.m.) are shown in each region for outcomes of UB leading to adaptation (UBþ) or
not (UB�) and UC leading to adaptation (UCþ) or not (UC�). Images shown at uncorrected threshold P < 0.001.

Table 2. Brain regions (and Brodmann areas) associated with successful social adapta-
tion following unexpected outcomes in a repeated trust game; differentiating UC and UB;
and showing differential changes in response to UC and betrayal over time

L/R BA Voxels MNI coordinates Z-score

Successful > unsuccessful adaptation (UBþ & UCþ > UB� & UC�)
L Lingual gyrus (17) 8 (�9, �97, 7) 4.08
L Middle temporal gyrus (39) 8 (�36, �64, 37) 4.01
L Superior parietal lobe (7) 13 (�30, �52, 43) 4.15
L Fusiform cortex (37) 8 (�51, �43, �8) 3.98
R Midbrain (SN) 5 (9, �13, �20) 4.01
R Caudate 15 (18, �7, 31) 4.5
R DLPFC (9) 48 (36, 11, 31) 4.72
L Anterior cingulate (32) 5 (�12, 23, 37) 4.43
L Middle frontal gyrus (9) 46 (�39, 29, 19) 4.35
L Middle frontal gyrus (10) 7 (39, 29, 28) 4.3
L Lateral OFC (10) 6 (�39, 59, �8) 4.4

UC > UB
R Lingual gyrus (18) 9 (12, �73, �5) 3.33
R Hippocampus 13 (30, �28, �5) 3.84
L/R Thalamus 5 (0, �22, 1) 3.33
L/R Midbrain (SN)* 13 (3, �16, �20) 3.52
R Caudate* 5 (18, �10, 28) 3.19
R Anterior insula 7 (39, 5, 13) 3.41

Relative increase in UC vs UB over time
L/R Posterior cingulate (29) 6 (0, �52, 7) 3.33
L Anterior cingulate (24) 16 (�6, 26, 13) 3.38
R Anterior cingulate (32) 8 (3, 44, 1) 3.18
L Superior frontal gyrus (9) 21 (�24, 38, 1) 3.41
R Lateral OFC (11)** 13 (33, 47, �17) 3.71

Main effects thresholded at P < 0.001, uncorrected for multiple comparisons. Extent threshold¼ 5
voxels.
*Regions showing overlap of A and B in conjunction at P < 0.005.
**Regions showing overlap of A and C in conjunction at P < 0.005.
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0.5. In such a situation, equivalent learning effects from cooperation or

betrayal would result in different observed outcomes. This could result

in the probability of subsequent cooperation being regarded as high

following an ‘UC’ outcome, but only being downgraded to intermedi-

ate following ‘UB’. However, whilst this effect may have contributed to

the observed differences, comparing the initial investment rates in

round one with the subsequent probabilities of investment following

UC and UB trials suggests that an initial positive bias is unlikely to be

the only explanation.

A third factor may be that the negative consequences of UC and

betrayal, and indeed of choosing to trust a partner or not, differ in this

study. Although the points value which was lost in UB encounters was

equivalent to the potential loss (or lack of gain) in UC trials was

equivalent, choices in social encounters may have additional

non-monetary costs (see Fehr and Camerer, 2007). Being betrayed

by a partner who you hoped would reciprocate is hurtful, and the

‘cost’ may exceed the money lost. However, not trusting a potentially

cooperative partner results not only in a monetary loss (or lack of gain)

for the investor, but also for the social partner, and may result in a loss

of reputation�the investor may therefore lose potential future oppor-

tunities for collaboration. If in the present experiment, the

non-monetary cost of being the ‘bad’ partner who does not cooperate

outweighed the non-monetary cost of being betrayed, that could form

a stronger stimulus for social learning and subsequent social

adaptation.

Social learning requires the brain to monitor choices and outcomes,

to bind these with contextual factors and to use this information to

guide future decision making. In the present experiment, social adap-

tation implies that during a second encounter a subject would be less

likely to invest with a trustee by whom they had been betrayed when

previously encountered, but would be more likely to invest following

cooperation, while social reinforcement suggests implies increased like-

lihood of investing again following reciprocation and of not investing

again with partners who would not have reciprocated if given the

opportunity.

One key brain region identified as being involved in social learning

is the striatum, which has been widely implicated in reward processing

(Delgado et al., 2000; Elliot et al., 2000; Kampe et al., 2001), and re-

sponds differentially to trust game outcomes (Delgado et al, 2005;

King-Casas et al., 2005; Phan et al., 2010). There is prior evidence of

a striatal ventral–dorsal dissociation in responses to unexpectedly posi-

tive vs unexpectedly negative outcomes (Seymour et al., 2007;

Robinson et al., 2010).

In the present experiment, when a social partner responded in ac-

cordance with a subject’s prediction, i.e. reciprocation from those in-

vested with (EC) or not from those who were not trusted (EB), there is

greater engagement of the ventral striatum than when they act contrary

to expectations. In a social reciprocal exchange paradigm, both out-

comes which result in gains and those which avoid losses can be con-

strued as beneficial to the investor and thus are ‘positive’. Although

these outcomes are described as ‘expected’, in that they match the

investing subject’s prediction, there is a degree of uncertainty in that

prediction. Ventral striatal activity may reflect the updating of the

predicted likelihood of a partner cooperating, reflecting strengthening

of subjects beliefs about a particular partner following ‘positive’ feed-

back. This interpretation is supported by the finding that there was

greater ventral striatal activity elicited by EC from partners who again

attracted investment on subsequent encounters (ECþ) compared with

those partners who were not trusted during future social interactions

(EC�). Further supporting evidence for a role in updating values based

on positive feedback comes from a Prisoner’s Dilemma paradigm,

which also utilized only female subjects, showing that activity in ven-

tral striatum was associated with development of mutual cooperation

between players (Rilling et al., 2002).

In contrast, when social outcomes with novel partners were opposed

to those predicted, resulting in either an actual (UB) or virtual (UC)

loss, activity in the dorsal striatum was associated with subsequent

behavioural adaptation, supporting the previously described ven-

tral–dorsal distinction for processing ‘positive’ and ‘negative’ feedback

and implying distinct functional roles is supporting social learning.

Social adaptation following unexpected outcomes was also asso-

ciated with neural activity in lateral OFC, which processes information

about reward contingencies (O’Doherty et al., 2003b; Tobler et al.,

2007) and supports behavioural adaptation following unexpected

Fig. 6 Change in neural responses to unexpected betrayal and cooperation over time. There were greater decreases in responses to UB (UB/dt) relative to UC (UC/dt) in lateral OFC (A, circled), parahippocampal
cortex (B) and anterior cingulate cortex (C). Parameter estimates (�s.e.m.) for the depicted regions are plotted in the lower part of each panel. Images shown at uncorrected threshold P < 0.001.
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negative outcomes during reversal learning (Ghahremani et al., 2010).

Similar effects were observed in the dorsolateral prefrontal cortex, a

brain region associated with strategic thinking in social interaction

games (Yoshida et al., 2010), and with linking reward signals to

future behaviour (Wallis and Kennerley, 2010).

ACC activity was also associated with successful social adaptation.

This brain region has been implicated in processing of uncertainty and

response selection (Critchley et al., 2001; Stern et al., 2010). This role

has previously been shown to extend to social learning, with regional

ACC activity correlated with reward prediction error in a

decision-making task in which subjects could make choices based on

both their own experience, and the advice of a social ‘confederate’

(Behrens et al., 2008). Learning the value of the advice of a social

partner was associated with differential regional activity in ACC com-

pared with learning from individual experience in that task. In the

present study, the association between increased ACC signal and like-

lihood of subsequently adapting behaviour supports the concept of this

region detecting prediction error in social contexts and supporting

behavioural change appropriately.

Three distinct patterns of activity were observed when we compared

neural activity following first round encounters that led to UC, com-

pared with UB. The first effect was ‘valence specific’ and differentiated

successful from unsuccessful adaptation in round two following UC,

but not betrayal. This pattern was most notable in the midbrain/sub-

stantia nigra region. Activity in this region following UC by partners

during round one was associated with an adaptive change in behav-

iour, with increased signal elicited by UC in round one associated with

subsequent investment vs non-investment decisions during round two.

The substantia nigra has been strongly implicated in reward pro-

cessing (Herberg et al., 1976; Wittmann et al., 2005), and projects

dopaminergic neurons to many brain regions including the striatum

(Smith and Kieval, 2000). The ventral tegmental area, which is closely

related to substantia nigra, has previously been implicated in making

trust decisions conditional on a partner’s expected response (Krueger

et al., 2007). Although it must be acknowledged that exact anatomical

localization of midbrain nuclei is difficult with fMRI, the current find-

ings are consistent with a possible role for dopaminergic projections

from the midbrain in the region of the substantia nigra playing a key

role in learning about potentially rewarding outcomes and adapting

behaviour appropriately.

The second pattern of activity was observed in dorsal striatum.

Following both UC and UB during round one, such activity was asso-

ciated with successful adaptation during round two. As was observed

with the effects in the midbrain, striatal activity was greater following

UC than UB. Neural activity in the striatum and the midbrain has been

extensively linked with signalling of ‘prediction errors’ (e.g. Schultz

et al., 1997; O’Doherty et al., 2003a; 2004). It may be that those

encounters that are more surprising, and thus have greater ‘prediction

error’ are more likely to be associated with subsequent adaptations in

behaviour. Although the difference in proportions was not significant,

there were fewer cases of UC than of UB during the first round of trust

games in the present experiment. This may have increased the predic-

tion error and hence the subsequent learning from those encounters.

However, the present findings may also be interpreted as showing that

striatal activity more closely reflects effective learning and adaptation

effects, which are a downstream consequence of prediction error sig-

nalling, rather than reflecting the size of the prediction error per se. In

this case, previous studies may have found striatal effects to be larger

with increasing prediction error because those trials were more likely

to generate learning or adaptation in response.

A third group of brain regions, including the right lateral OFC, also

showed patterns of activity that discriminated between successful and

unsuccessful adaptation to outcomes of UC or UB during the first

series of trust games, but additionally showed a modulation of activity

over the experiment. UB elicited decreasing activity in these brain re-

gions as the experiment progressed and the number of trustee partners

encountered increased. Reducing expectations of trustworthy behav-

iour by partners during the course of the experiment paralleled this

modulation of regional neural activity.

We propose that, as expectations of partners’ actions are lowered,

betrayal becomes less surprising and the degree of expectation viola-

tion reduces. The corresponding decrease in regional neural responses

associated with successful behavioural adaptation implies that learning

from betrayal may decrease as a result of altered expectations with

increasing group size. Taken together, the changes in regional neural

responses, adaptation effects and response bias imply that different

strategic approaches to reciprocal exchange may optimize individual

outcomes in groups of different sizes, and that the social brain adapts

to facilitate this.

As noted in the methods section, the current study only compared

behaviour and neural activity in female participants interacting with

other females. While this avoided the risk of confounding by

cross-gender behavioural differences, it remains to be determined

whether the pattern of behaviour and neural activity would be similar

in male participants. In particular, the non-monetary costs associated

with adverse outcomes may differ with individual social preferences

which might be influenced by gender. Additionally, inter-gender social

interactions may be associated with differences in the neural processes

associated with social learning and subsequent behaviour.

Our findings provide evidence for a network of brain regions,

involved in reward processing and decision making, associated with

reinforcement and adaptation of behaviour during social interactions.

We observed distinct effects sensitive to expectation violation and

others apparently specific to particular outcomes of social encounters,

and show modulation of these effects over time. These results suggest

that the social brain reinforces and adapts neural activity to drive co-

operative behaviour with trustworthy partners.
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