34 research outputs found

    Intralocus Sexual Conflict Diminishes the Benefits of Sexual Selection

    Get PDF
    Evolution based on the benefits of acquiring β€œgood genes” in sexual selection is only plausible with the reliable transmission of genetic quality from one generation to the next. Accumulating evidence suggests that sexually antagonistic (SA) genes with opposite effects on Darwinian fitness when expressed in the two different sexes may be common in animals and plants. These SA genes should weaken the potential indirect genetic benefits of sexual selection by reducing the fitness of opposite-sex progeny from high-fitness parents. Here we use hemiclonal analysis in the fruit fly, Drosophila melanogaster, to directly measure the inheritance of fitness across generations, over the entire genome. We show that any potential genetic benefits of sexual selection in this system are not merely weakened, but completely reversed over one generation because high-fitness males produce low-fitness daughters and high-fitness mothers produce low-fitness sons. Moreover, male fitness was not inherited by sons, consistent with both theory and recent evidence connecting this form of SA variation with the X chromosome. This inheritance pattern may help to explain how genetic variation for fitness is sustained despite strong sexual selection, and why the ZW sex chromosome system found in birds and butterflies appears to foster the evolution of extreme secondary sexual characters in males

    Reproductive Behaviour Evolves Rapidly When Intralocus Sexual Conflict Is Removed

    Get PDF
    Background Intralocus sexual conflict can inhibit the evolution of each sex towards its own fitness optimum. In a previous study, we confirmed this prediction through the experimental removal of female selection pressures in Drosophila melanogaster, achieved by limiting the expression of all major chromosomes to males. Compared to the control populations (C1-4) where the genomes are exposed to selection in both sexes, the populations with male-limited genomes (ML1-4) showed rapid increases in male fitness, whereas the fitness of females expressing ML-evolved chromosomes decreased [1]. Methodology/Principal Findings Here we examine the behavioural phenotype underlying this sexual antagonism. We show that males expressing the ML genomes have a reduced courtship level but acquire the same number of matings. On the other hand, our data suggest that females expressing the ML genomes had reduced attractiveness, stimulating a lower rate of courtship from males. Moreover, females expressing ML genomes tend to display reduced yeast-feeding behaviour, which is probably linked to the reduction of their fecundity. Conclusion/Significance These results suggest that reproductive behaviour is shaped by opposing selection on males and females, and that loci influencing attractiveness and foraging were polymorphic for alleles with sexually antagonistic expression patterns prior to ML selection. Hence, intralocus sexual conflict appears to play a role in the evolution of a wide range of fitness-related traits and may be a powerful mechanism for the maintenance of genetic variation in fitness

    Experimental mutation-accumulation on the X chromosome of Drosophila melanogaster reveals stronger selection on males than females

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sex differences in the magnitude or direction of mutational effect may be important to a variety of population processes, shaping the mutation load and affecting the cost of sex itself. These differences are expected to be greatest after sexual maturity. Mutation-accumulation (MA) experiments provide the most direct way to examine the consequences of new mutations, but most studies have focused on juvenile viability without regard to sex, and on autosomes rather than sex chromosomes; both adult fitness and X-linkage have been little studied. We therefore investigated the effects of 50 generations of X-chromosome mutation accumulation on the fitness of males and females derived from an outbred population of <it>Drosophila melanogaster</it>.</p> <p>Results</p> <p>Fitness declined rapidly in both sexes as a result of MA, but adult males showed markedly greater fitness loss relative to their controls compared to females expressing identical genotypes, even when females were made homozygous for the X. We estimate that these mutations are partially additive (h ~ 0.3) in females. In addition, the majority of new mutations appear to harm both males and females.</p> <p>Conclusions</p> <p>Our data helps fill a gap in our understanding of the consequences of sexual selection for genetic load, and suggests that stronger selection on males may indeed purge deleterious mutations affecting female fitness.</p

    Gene Expression Disruptions of Organism versus Organ in Drosophila Species Hybrids

    Get PDF
    Hybrid dysfunctions, such as sterility, may result in part from disruptions in the regulation of gene expression. Studies of hybrids within the Drosophila simulans clade have reported genes expressed above or below the expression observed in their parent species, and such misexpression is associated with male sterility in multigenerational backcross hybrids. However, these studies often examined whole bodies rather than testes or had limited replication using less-sensitive but global techniques. Here, we use a new RNA isolation technique to re-examine hybrid gene expression disruptions in both testes and whole bodies from single Drosophila males by real-time quantitative RT-PCR. We find two early-spermatogenesis transcripts are underexpressed in hybrid whole-bodies but not in assays of testes alone, while two late-spermatogenesis transcripts seem to be underexpressed in both whole-bodies and testes alone. Although the number of transcripts surveyed is limited, these results provide some support for a previous hypothesis that the spermatogenesis pathway in these sterile hybrids may be disrupted sometime after the expression of the early meiotic arrest genes

    Female Genitalia Concealment Promotes Intimate Male Courtship in a Water Strider

    Get PDF
    Violent coercive mating initiation is typical for animals with sexual conflict over mating. In these species, the coevolutionary arms-race between female defenses against coercive mating and male counter-adaptations for increased mating success leads to coevolutionary chases of male and female traits that influence the mating. It has been controversial whether one of the sexes can evolve traits that allow them to β€œwin” this arms race. Here, we use morphological analysis (traditional and scanning electron micrographs), laboratory experiments and comparative methods to show how females of a species characterized by typical coercive mating initiation appear to β€œwin” a particular stage of the sexual conflict by evolving morphology to hide their genitalia from direct, forceful access by males. In an apparent response to the female morphological adaptation, males of this species added to their typically violent coercive mounting of the female new post-mounting, pre-copulatory courtship signals produced by tapping the water's surface with the mid-legs. These courtship signals are intimate in the sense that they are aimed at the female, on whom the male is already mounted. Females respond to the signals by exposing their hidden genitalia for copulatory intromission. Our results indicate that the apparent victory of coevolutionary arms race by one sex in terms of morphology may trigger evolution of a behavioral phenotype in the opposite sex

    Versatile Aggressive Mimicry of Cicadas by an Australian Predatory Katydid

    Get PDF
    Background: In aggressive mimicry, a predator or parasite imitates a signal of another species in order to exploit the recipient of the signal. Some of the most remarkable examples of aggressive mimicry involve exploitation of a complex signal-response system by an unrelated predator species. Methodology/Principal Findings: We have found that predatory Chlorobalius leucoviridis katydids (Orthoptera: Tettigoniidae) can attract male cicadas (Hemiptera: Cicadidae) by imitating the species-specific wing-flick replies of sexually receptive female cicadas. This aggressive mimicry is accomplished both acoustically, with tegminal clicks, and visually, with synchronized body jerks. Remarkably, the katydids respond effectively to a variety of complex, species-specific Cicadettini songs, including songs of many cicada species that the predator has never encountered. Conclusions/Significance: We propose that the versatility of aggressive mimicry in C. leucoviridis is accomplished by exploiting general design elements common to the songs of many acoustically signaling insects that use duets in pairformation. Consideration of the mechanism of versatile mimicry in C. leucoviridis may illuminate processes driving the evolution of insect acoustic signals, which play a central role in reproductive isolation of populations and the formation of species

    Data from: Direct benefits of choosing a high fitness mate can offset the indirect costs associated with intralocus sexual conflict

    No full text
    Intralocus sexual conflict generates a cost to mate choice: high fitness partners transmit genetic variation that confers lower fitness to offspring of the opposite sex. Our earlier work in the fruit fly, Drosophila melanogaster, revealed that these indirect genetic costs were sufficient to reverse potential β€œgood genes” benefits of sexual selection. However, mate choice can also confer direct fitness benefits by inducing larger numbers of progeny. Here, we consider whether direct benefits through enhanced fertility could offset the costs associated with intralocus sexual conflict in D. melanogaster. Using hemiclonal analysis, we found that females mated to high fitness males produced 11% more offspring compared to those mated to low fitness males, and high fitness females produced 37% more offspring than low fitness females. These direct benefits more than offset the reduction in offspring fitness caused by intralocus sexual conflict, creating a net fitness benefit for each sex to pairing with a high fitness partner. Our findings highlight the need to consider both direct and indirect effects when investigating the fitness impacts of mate choice. Direct fitness benefits may shelter sexually antagonistic alleles from selection, suggesting a novel mechanism for the maintenance of fitness variation

    Data from: Sexual conflict in wing size and shape in Drosophila melanogaster

    No full text
    Intralocus sexual conflict occurs when opposing selection pressures operate on loci expressed in both sexes, constraining the evolution of sexual dimorphism and displacing one or both sexes from their optimum. We eliminated intralocus conflict in Drosophila melanogaster by limiting transmission of all major chromosomes to males, thereby allowing them to win the intersexual tug-of-war. Here we show that this male-limited (ML) evolution treatment led to the evolution (in both sexes) of masculinized wing morphology, body size, growth rate, wing loading, and allometry. In addition to more male-like size and shape, ML evolution resulted in an increase in developmental stability for males. However females expressing ML chromosomes were less developmentally stable, suggesting that being ontogenetically more male-like was disruptive to development. Sexual selection over size and shape of the imago may explain the persistence of substantial genetic variation in these characters and the ontogenetic processes underlying them

    Differences in Fitness between the Lines Selected as Parents for Experimental Crosses Were Substantial and Genetically Mediated

    No full text
    <p>In the male fitness survey (<i>n</i> = 70), the mean proportion of offspring fathered (Β± 95% confidence interval [CI]) was 0.544 Β± 0.016. In the female fitness survey (<i>n</i> = 12), the mean fecundity was 22.85 Β± 1.87. Error bars indicate standard errors.</p

    X-Linked SA Variation Results in an Inverted Pattern of Fitness Inheritance from Fathers to Daughters and Mothers to Sons

    No full text
    <div><p>(A) Daughter reproductive success, measured as egg production in an 18-h period, was positively related to maternal fitness and negatively related to paternal fitness.</p> <p>(B) In contrast, son reproductive success, measured as the proportion of offspring fathered, was negatively related to maternal fitness and unaffected by paternal fitness.</p> <p>Error bars indicate standard errors.</p></div
    corecore