898 research outputs found

    Incorporation of dUTP does not mediate mutation of A:T base pairs in Ig genes in vivo

    Get PDF
    Activation-induced cytidine deaminase (AID) protein initiates Ig gene mutation by deaminating cytosines, converting them into uracils. Excision of AID-induced uracils by uracil-N-glycosylase is responsible for most transversion mutations at G:C base pairs. On the other hand, processing of AID-induced G:U mismatches by mismatch repair factors is responsible for most mutation at Ig A:T base pairs. Why mismatch processing should be error prone is unknown. One theory proposes that long patch excision in G1-phase leads to dUTP-incorporation opposite adenines as a result of the higher G1-phase ratio of nuclear dUTP to dTTP. Subsequent base excision at the A:U base pairs produced could then create non-instructional templates leading to permanent mutations at A:T base pairs (1). This compelling theory has remained untested. We have developed a method to rapidly modify DNA repair pathways in mutating mouse B cells in vivo by transducing Ig knock-in splenic mouse B cells with GFP-tagged retroviruses, then adoptively transferring GFP+ cells, along with appropriate antigen, into primed congenic hosts. We have used this method to show that dUTP-incorporation is unlikely to be the cause of AID-induced mutation of A:T base pairs, and instead propose that A:T mutations might arise as an indirect consequence of nucleotide paucity during AID-induced DNA repair

    Local Causal States and Discrete Coherent Structures

    Get PDF
    Coherent structures form spontaneously in nonlinear spatiotemporal systems and are found at all spatial scales in natural phenomena from laboratory hydrodynamic flows and chemical reactions to ocean, atmosphere, and planetary climate dynamics. Phenomenologically, they appear as key components that organize the macroscopic behaviors in such systems. Despite a century of effort, they have eluded rigorous analysis and empirical prediction, with progress being made only recently. As a step in this, we present a formal theory of coherent structures in fully-discrete dynamical field theories. It builds on the notion of structure introduced by computational mechanics, generalizing it to a local spatiotemporal setting. The analysis' main tool employs the \localstates, which are used to uncover a system's hidden spatiotemporal symmetries and which identify coherent structures as spatially-localized deviations from those symmetries. The approach is behavior-driven in the sense that it does not rely on directly analyzing spatiotemporal equations of motion, rather it considers only the spatiotemporal fields a system generates. As such, it offers an unsupervised approach to discover and describe coherent structures. We illustrate the approach by analyzing coherent structures generated by elementary cellular automata, comparing the results with an earlier, dynamic-invariant-set approach that decomposes fields into domains, particles, and particle interactions.Comment: 27 pages, 10 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/dcs.ht

    Neutrophils are Mediators of Metastatic Prostate Cancer Progression in Bone

    Get PDF
    Bone metastatic prostate cancer (BM-PCa) significantly reduces overall patient survival and is currently incurable. Current standard immunotherapy showed promising results for PCa patients with metastatic, but less advanced, disease (i.e., fewer than 20 bone lesions) suggesting that PCa growth in bone contributes to response to immunotherapy. We found that: (1) PCa stimulates recruitment of neutrophils, the most abundant immune cell in bone, and (2) that neutrophils heavily infiltrate regions of prostate tumor in bone of BM-PCa patients. Based on these findings, we examined the impact of direct neutrophil-prostate cancer interactions on prostate cancer growth. Bone marrow neutrophils directly induced apoptosis of PCa in vitro and in vivo, such that neutrophil depletion in bone metastasis models enhanced BM-PCa growth. Neutrophil-mediated PCa killing was found to be mediated by suppression of STAT5, a transcription factor shown to promote PCa progression. However, as the tumor progressed in bone over time, neutrophils from late-stage bone tumors failed to elicit cytotoxic effector responses to PCa. These findings are the first to demonstrate that bone-resident neutrophils inhibit PCa and that BM-PCa are able to progress via evasion of neutrophil-mediated killing. Enhancing neutrophil cytotoxicity in bone may present a novel therapeutic option for bone metastatic prostate cancer

    Neutrophil Signaling During Myocardial Infarction Wound Repair

    Get PDF
    Neutrophils are key effector cells of the innate immune system, serving as a first line of defense in the response to injury and playing essential roles in the wound healing process. Following myocardial infarction (MI), neutrophils infiltrate into the infarct region to propagate inflammation and begin the initial phase of cardiac wound repair. Pro-inflammatory neutrophils release proteases to degrade extracellular matrix (ECM), a necessary step for the removal of necrotic myocytes as a prelude for scar formation. Neutrophils transition their phenotype over time to regulate MI inflammation resolution and stabilize scar formation. Neutrophils contribute to the evolution from inflammation to resolution and scar formation by serving anti-inflammatory and repair functions. As anti-inflammatory cells, neutrophils contribute ECM proteins during scar formation, in particular fibronectin, galectin-3, and vimentin. The diverse and polarizing functions that contribute to MI wound repair make this innate immune cell a viable target to improve MI outcomes. Thus, understanding the signaling involved in neutrophil physiology in the context of MI may help to identify novel therapeutic targets

    Structural-Thermal-Optical-Performance (STOP) Model Development and Analysis of a Field-widened Michelson Interferometer

    Get PDF
    An integrated Structural-Thermal-Optical-Performance (STOP) model was developed for a field-widened Michelson interferometer which is being built and tested for the High Spectral Resolution Lidar (HSRL) project at NASA Langley Research Center (LaRC). The performance of the interferometer is highly sensitive to thermal expansion, changes in refractive index with temperature, temperature gradients, and deformation due to mounting stresses. Hand calculations can only predict system performance for uniform temperature changes, under the assumption that coefficient of thermal expansion (CTE) mismatch effects are negligible. An integrated STOP model was developed to investigate the effects of design modifications on the performance of the interferometer in detail, including CTE mismatch, and other three- dimensional effects. The model will be used to improve the design for a future spaceflight version of the interferometer. The STOP model was developed using the Comet SimApp'TM' Authoring Workspace which performs automated integration between Pro-Engineer, Thermal Desktop, MSC Nastran'TM', SigFit'TM', Code V'TM', and MATLAB. This is the first flight project for which LaRC has utilized Comet, and it allows a larger trade space to be studied in a shorter time than would be possible in a traditional STOP analysis. This paper describes the development of the STOP model, presents a comparison of STOP results for simple cases with hand calculations, and presents results of the correlation effort to bench-top testing of the interferometer. A trade study conducted with the STOP model which demonstrates a few simple design changes that can improve the performance seen in the lab is also presented

    Measurement of the branching ratios of the Z0 into heavy quarks

    Full text link
    We measure the hadronic branching ratios of the Z0 boson into heavy quarks: Rb=Gamma(Z0->bb)/Gamma(Z0->hadrons) and Rc=Gamma(Z0->cc/Gamma(Z0->hadrons) using a multi-tag technique. The measurement was performed using about 400,000 hadronic Z0 events recorded in the SLD experiment at SLAC between 1996 and 1998. The small and stable SLC beam spot and the CCD-based vertex detector were used to reconstruct bottom and charm hadron decay vertices with high efficiency and purity, which enables us to measure most efficiencies from data. We obtain, Rb=0.21604 +- 0.00098(stat.) +- 0.00073(syst.) -+ 0.00012(Rc) and, Rc= 0.1744 +- 0.0031(stat.) +- 0.0020(syst.) -+ 0.0006(Rb)Comment: 37 pages, 8 figures, to be submitted to Phys. Rev. D version 2: changed title to ratios, used common D production fractions for Rb and Rc and corrected Zgamma interference. Identical to PRD submissio

    ICON 2019: International Scientific Tendinopathy Symposium Consensus: Clinical Terminology

    Get PDF
    © Author(s) (or their employer(s)) 2019. No commercial re-use. See rights and permissions. Published by BMJ.Background Persistent tendon pain that impairs function has inconsistent medical terms that can influence choice of treatment.1 When a person is told they have tendinopathy by clinician A or tendinitis by clinician B, they might feel confused or be alarmed at receiving what they might perceive as two different diagnoses. This may lead to loss of confidence in their health professional and likely adds to uncertainty if they were to search for information about their condition. Clear and uniform terminology also assists inter-professional communication. Inconsistency in terminology for painful tendon disorders is a problem at numerous anatomical sites. Historically, the term ‘tendinitis’ was first used to describe tendon pain, thickening and impaired function (online supplementary figure S1). The term ‘tendinosis’ has also been used in a small number of publications, some of which were very influential.2 3 Subsequently, ‘tendinopathy’ emerged as the most common term for persistent tendon pain.4 5 To our knowledge, experts (clinicians and researchers) or patients have never engaged in a formal process to discuss the terminology we use. We believe that health professionals have not yet agreed on the appropriate terminology for painful tendon conditions.Peer reviewedFinal Accepted Versio

    Direct Measurements of A_b and A_c using Vertex/Kaon Charge Tags at SLD

    Get PDF
    Exploiting the manipulation of the SLC electron-beam polarization, we present precise direct measurements of the parity violation parameters A_c and A_b in the Z boson - c quark and Z boson - b quark coupling. Quark/antiquark discrimination is accomplished via a unique algorithm that takes advantage of the precise SLD CCD vertex detector, employing the net charge of displaced vertices as well as the charge of kaons that emanate from those vertices. From the 1996-98 sample of 400,000 Z decays, produced with an average beam polarization of 73.4%, we find A_c = 0.673 +/- 0.029 (stat.) +/- 0.023 (syst.) and A_b = 0.919 +/- 0.018 (stat.) +/- 0.017 (syst.).Comment: 11 pages, 2 figures, 2 tables, to be submitted to Physical Review Letters; version 2 reflects changes suggested by the refere

    Emerging Themes from the ESA Symposium Entitled “Pollinator Nutrition: Lessons from Bees at Individual to Landscape Levels”

    Get PDF
    Pollinator populations are declining (Biesmeijer et al., 2006; Brodschneider et al., 2018; Cameron et al., 2011; Goulson, Lye, & Darvill, 2008; Kulhanek et al., 2017; National Research Council, 2007; Oldroyd, 2007), and both anecdotal and experimental evidence suggest that limited access to high quality forage might play a role (Carvell, Meek, Pywell, Goulson, & Nowakowski, 2007; Deepa et al., 2017; Goulson, Nicholls, Botias, & Rotheray, 2015; Potts et al., 2003, 2010; Vanbergen & The Insect Pollinators Initiative, 2013; Vaudo, Tooker, Grozinger, & Patch, 2015; Woodard, 2017). Multiple researchers are earnestly addressing this topic in a diverse array of insect-pollinator systems. As research continues to be published, increased communication among scientists studying the topic of nutrition is essential for improving pollinator health

    Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

    Get PDF
    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.Comment: 56 pages, 25 figures; various clarifications; accepted to CQ
    • 

    corecore