20 research outputs found

    The C-terminal portion of the cleaved HT motif is necessary and sufficient to mediate export of proteins from the malaria parasite into its host cell

    Get PDF
    The malaria parasite exports proteins across its plasma membrane and a surrounding parasitophorous vacuole membrane, into its host erythrocyte. Most exported proteins contain a Host Targeting motif (HT motif) that targets them for export. In the parasite secretory pathway, the HT motif is cleaved by the protease plasmepsin V, but the role of the newly generated N-terminal sequence in protein export is unclear. Using a model protein that is cleaved by an exogenous viral protease, we show that the new N-terminal sequence, normally generated by plasmepsin V cleavage, is sufficient to target a protein for export, and that cleavage by plasmepsin V is not coupled directly to the transfer of a protein to the next component in the export pathway. Mutation of the fourth and fifth positions of the HT motif, as well as amino acids further downstream, block or affect the efficiency of protein export indicating that this region is necessary for efficient export. We also show that the fifth position of the HT motif is important for plasmepsin V cleavage. Our results indicate that plasmepsin V cleavage is required to generate a new N-terminal sequence that is necessary and sufficient to mediate protein export by the malaria parasite

    The role of disulfide bond replacements in analogues of the Tarantula toxin ProTx-II and their effects on inhibition of the voltage-gated sodium ion channel Nav1.7

    Get PDF
    Spider venom toxins, such as Protoxin-II (ProTx-II), have recently received much attention as selective Nav1.7 channel blockers, with potential to be developed as leads for the treatment of chronic nocioceptive pain. ProTx-II is a 30-amino acid peptide with three disulfide bonds that has been reported to adopt a well-defined inhibitory cystine knot (ICK) scaffold structure. Potential drawbacks with such peptides include poor pharmacodynamics and potential scrambling of the disulfide bonds in vivo. In order to address these issues, in the present study we report the solid-phase synthesis of lanthionine-bridged analogues of ProTx-II, in which one of the three disulfide bridges is replaced with a thioether linkage, and evaluate the biological properties of these analogues. We have also investigated the folding and disulfide bridging patterns arising from different methods of oxidation of the linear peptide precursor. Finally, we report the X-ray crystal structure of ProTx-II to atomic resolution; to our knowledge this is the first crystal structure of an ICK spider venom peptide not bound to a substrate

    Structure of the stationary phase survival protein YuiC from B.subtilis

    Get PDF
    - Background: Stationary phase survival proteins (Sps) were found in Firmicutes as having analogous domain compositions, and in some cases genome context, as the resuscitation promoting factors of Actinobacteria, but with a different putative peptidoglycan cleaving domain. - Results: The first structure of a Firmicute Sps protein YuiC from B. subtilis, is found to be a stripped down version of the cell-wall peptidoglycan hydrolase MltA. The YuiC structures are of a domain swapped dimer, although some monomer is also found in solution. The protein crystallised in the presence of pentasaccharide shows a 1,6-anhydrodisaccharide sugar product, indicating that YuiC cleaves the sugar backbone to form an anhydro product at least on lengthy incubation during crystallisation. - Conclusions: The structural simplification of MltA in Sps proteins is analogous to that of the resuscitation promoting factor domains of Actinobacteria, which are stripped down versions of lysozyme and soluble lytic transglycosylase proteins

    Structure of a VirD4 coupling protein bound to a VirB type IV secretion machinery.

    Get PDF
    Type IV secretion (T4S) systems are versatile bacterial secretion systems mediating transport of protein and/or DNA T4S systems are generally composed of 11 VirB proteins and 1 VirD protein (VirD4). The VirB1-11 proteins assemble to form a secretion machinery and a pilus while the VirD4 protein is responsible for substrate recruitment. The structure of VirD4 in isolation is known; however, its structure bound to the VirB1-11 apparatus has not been determined. Here, we purify a T4S system with VirD4 bound, define the biochemical requirements for complex formation and describe the protein-protein interaction network in which VirD4 is involved. We also solve the structure of this complex by negative stain electron microscopy, demonstrating that two copies of VirD4 dimers locate on both sides of the apparatus, in between the VirB4 ATPases. Given the central role of VirD4 in type IV secretion, our study provides mechanistic insights on a process that mediates the dangerous spread of antibiotic resistance genes among bacterial populations

    Autophosphorylation Activity of a Soluble Hexameric Histidine Kinase Correlates with the Shift in Protein Conformational Equilibrium

    Get PDF
    SummaryIn a commonly accepted model, in response to stimuli, bacterial histidine kinases undergo a conformational transition between an active and inactive form. Structural information on histidine kinases is limited. By using ion mobility-mass spectrometry (IM-MS), we demonstrate an exchange between two conformational populations of histidine kinase ExsG that are linked to different levels of kinase activity. ExsG is an atypical signaling protein that incorporates an uncommon histidine kinase catalytic core at the C terminus preceded by an N-terminal “receiver domain” that is normally associated with the response regulator proteins in two-component signal transduction systems. IM-MS analysis and enzymatic assays indicate that phosphorylation of the ExsG receiver domain stabilizes the “compact” form of the protein and inhibits kinase core activity; in contrast, nucleotide binding required for kinase activity is associated with the more open conformation of ExsG
    corecore