388 research outputs found

    Viral Double-Strand RNA-Binding Proteins Can Enhance Innate Immune Signaling by Toll-Like Receptor 3

    Get PDF
    Toll-like Receptor 3 (TLR3) detects double-stranded (ds) RNAs to activate innate immune responses. While poly(I:C) is an excellent agonist for TLR3 in several cell lines and in human peripheral blood mononuclear cells, viral dsRNAs tend to be poor agonists, leading to the hypothesis that additional factor(s) are likely required to allow TLR3 to respond to viral dsRNAs. TLR3 signaling was examined in a lung epithelial cell line by quantifying cytokine production and in human embryonic kidney cells by quantifying luciferase reporter levels. Recombinant 1b hepatitis C virus polymerase was found to enhance TLR3 signaling in the lung epithelial BEAS-2B cells when added to the media along with either poly(I:C) or viral dsRNAs. The polymerase from the genotype 2a JFH-1 HCV was a poor enhancer of TLR3 signaling until it was mutated to favor a conformation that could bind better to a partially duplexed RNA. The 1b polymerase also co-localizes with TLR3 in endosomes. RNA-binding capsid proteins (CPs) from two positive-strand RNA viruses and the hepadenavirus hepatitis B virus (HBV) were also potent enhancers of TLR3 signaling by poly(I:C) or viral dsRNAs. A truncated version of the HBV CP that lacked an arginine-rich RNA-binding domain was unable to enhance TLR3 signaling. These results demonstrate that several viral RNA-binding proteins can enhance the dsRNA-dependent innate immune response initiated by TLR3

    Comparing oncologic outcomes in patients undergoing surgery for oncocytic neoplasms, conventional oncocytoma, and chromophobe renal cell carcinoma

    Get PDF
    Introduction Oncocytic neoplasms are renal tumors similar to oncocytoma, but their morphologic variations preclude definitive diagnosis. This somewhat confusing diagnosis can create treatment and surveillance challenges for the treating urologist. We hypothesize that these subtle morphologic variations do not drastically affect the malignant potential of these tumors, and we sought to demonstrate this by comparing clinical outcomes of oncocytic neoplasms to those of classic oncocytoma and chromophobe. Methods We gathered demographic and outcomes data for patients with variant oncocytic tumors. Oncologic surveillance was conducted per institutional protocol in accordance with NCCN guidelines. Descriptive statistics were used to compare incidence of metastasis and death against those for patients with oncocytoma and chromophobe. Three hundred and fifty-one patients were analyzed: 164 patients with oncocytoma, 28 with oncocytic neoplasms, and 159 with chromophobe tumors. Results Median follow-up time for the entire cohort was 32.4 months, (interquartile range 9.2–70.0). Seventeen total patients (17/351, 4.9%) died during the course of the study. In patients with oncocytoma or oncocytic neoplasm, none were known to metastasize or die of their disease. Only chromophobe tumors >6 cm in size in our series demonstrated metastatic progression and approximately half of these metastasized tumors demonstrated sarcomatoid changes. Conclusion Variant oncocytic neoplasms appear to have a natural course similar to classic oncocytoma. These tumors appear to have no metastatic potential, and oncologic surveillance may not be indicated after surgery

    Community science for coastal acidification monitoring and research

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gassett, P. R., O’Brien-Clayton, K., Bastidas, C., Rheuban, J. E., Hunt, C., Turner, E., Liebman, M., Silva, E., Pimenta, A., Grear, J., Motyka, J., McCorkle, D., Stancioff, E., Brady, D., & Strong, A. Community science for coastal acidification monitoring and research. Coastal Management, 49(5), (2021): 510-531, https://doi.org/10.1080/08920753.2021.1947131.Ocean and coastal acidification (OCA) present a unique set of sustainability challenges at the human-ecological interface. Extensive biogeochemical monitoring that can assess local acidification conditions, distinguish multiple drivers of changing carbonate chemistry, and ultimately inform local and regional response strategies is necessary for successful adaptation to OCA. However, the sampling frequency and cost-prohibitive scientific equipment needed to monitor OCA are barriers to implementing the widespread monitoring of dynamic coastal conditions. Here, we demonstrate through a case study that existing community-based water monitoring initiatives can help address these challenges and contribute to OCA science. We document how iterative, sequential outreach, workshop-based training, and coordinated monitoring activities through the Northeast Coastal Acidification Network (a) assessed the capacity of northeastern United States community science programs and (b) engaged community science programs productively with OCA monitoring efforts. Our results (along with the companion manuscript) indicate that community science programs are capable of collecting robust scientific information pertinent to OCA and are positioned to monitor in locations that would critically expand the coverage of current OCA research. Furthermore, engaging community stakeholders in OCA science and outreach enabled a platform for dialogue about OCA among other interrelated environmental concerns and fostered a series of co-benefits relating to public participation in resource and risk management. Activities in support of community science monitoring have an impact not only by increasing local understanding of OCA but also by promoting public education and community participation in potential adaptation measures.AGU Centennial Grant NOAA OAP OFFICE North American Association for Environmental Education Curtis and Edith Munson Foundation Sea Grant programs within the region Senator George J. Mitchell Center for Sustainability Solutions Funding acknowledgment: MIT Sea Grant award NA18OAR4170105 to Bastidas NERACOOS The WestWind foundation (to Rheuban) Woods Hole Sea Grant (NOAA Grant No. NA18OAR4170104

    IVF for premature ovarian failure: first reported births using oocytes donated from a twin sister

    Get PDF
    BACKGROUND: Premature ovarian failure (POF) remains a clinically challenging entity because in vitro fertilisation (IVF) with donor oocytes is currently the only treatment known to be effective. METHODS: A 33 year-old nulligravid patient with a normal karyotype was diagnosed with POF; she had a history of failed fertility treatments and had an elevated serum FSH (42 mIU/ml). Oocytes donated by her dizygotic twin sister were used for IVF. The donor had already completed a successful pregnancy herself and subsequently produced a total of 10 oocytes after a combined FSH/LH superovulation regime. These eggs were fertilised with sperm from the recipient\u27s husband via intracytoplasmic injection and two fresh embryos were transferred to the recipient on day three. RESULTS: A healthy twin pregnancy resulted from IVF; two boys were delivered by caesarean section at 39 weeks\u27 gestation. Additionally, four embryos were cryopreserved for the recipient\u27s future use. The sister-donor achieved another natural pregnancy six months after oocyte retrieval, resulting in a healthy singleton delivery. CONCLUSION: POF is believed to affect approximately 1% of reproductive age females, and POF patients with a sister who can be an oocyte donor for IVF are rare. Most such IVF patients will conceive from treatment using oocytes from an anonymous oocyte donor. This is the first report of births following sister-donor oocyte IVF in Ireland. Indeed, while sister-donor IVF has been successfully undertaken by IVF units elsewhere, this is the only known case where oocyte donation involved twin sisters. As with all types of donor gamete therapy, pre-treatment counselling is important in the circumstance of sister oocyte donation

    A Low-Diversity Microbiota Inhabits Extreme Terrestrial Basaltic Terrains and Their Fumaroles : Implications for the Exploration of Mars

    Get PDF
    A major objective in the exploration of Mars is to test the hypothesis that the planet hosted life. Even in the absence of life, the mapping of habitable and uninhabitable environments is an essential task in developing a complete understanding of the geological and aqueous history of Mars and, as a consequence, understanding what factors caused Earth to take a different trajectory of biological potential. We carried out the aseptic collection of samples and comparison of the bacterial and archaeal communities associated with basaltic fumaroles and rocks of varying weathering states in Hawai'i to test four hypotheses concerning the diversity of life in these environments. Using high-throughput sequencing, we found that all these materials are inhabited by a low-diversity biota. Multivariate analyses of bacterial community data showed a clear separation between sites that have active fumaroles and other sites that comprised relict fumaroles, unaltered, and syn-emplacement basalts. Contrary to our hypothesis that high water flow environments, such as fumaroles with active mineral leaching, would be sites of high biological diversity, alpha diversity was lower in active fumaroles compared to relict or nonfumarolic sites, potentially due to high-temperature constraints on microbial diversity in fumarolic sites. A comparison of these data with communities inhabiting unaltered and weathered basaltic rocks in Idaho suggests that bacterial taxon composition of basaltic materials varies between sites, although the archaeal communities were similar in Hawai'i and Idaho. The taxa present in both sites suggest that most of them obtain organic carbon compounds from the atmosphere and from phototrophs and that some of them, including archaeal taxa, cycle fixed nitrogen. The low diversity shows that, on Earth, extreme basaltic terrains are environments on the edge of sustaining life with implications for the biological potential of similar environments on Mars and their exploration by robots and humans.Peer reviewe

    Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

    Get PDF
    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.Comment: 56 pages, 25 figures; various clarifications; accepted to CQ

    Dynamical Boson Stars

    Full text link
    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in Relativity; major revision in 201

    Achievement of therapeutic antibiotic exposures using Bayesian dosing software in critically unwell children and adults with sepsis

    Get PDF
    PURPOSE: Early recognition and effective treatment of sepsis improves outcomes in critically ill patients. However, antibiotic exposures are frequently suboptimal in the intensive care unit (ICU) setting. We describe the feasibility of the Bayesian dosing software Individually Designed Optimum Dosing Strategies (ID-ODS™), to reduce time to effective antibiotic exposure in children and adults with sepsis in ICU. METHODS: A multi-centre prospective, non-randomised interventional trial in three adult ICUs and one paediatric ICU. In a pre-intervention Phase 1, we measured the time to target antibiotic exposure in participants. In Phase 2, antibiotic dosing recommendations were made using ID-ODS™, and time to target antibiotic concentrations were compared to patients in Phase 1 (a pre-post-design). RESULTS: 175 antibiotic courses (Phase 1 = 123, Phase 2 = 52) were analysed from 156 participants. Across all patients, there was no difference in the time to achieve target exposures (8.7 h vs 14.3 h in Phase 1 and Phase 2, respectively, p = 0.45). Sixty-one courses in 54 participants failed to achieve target exposures within 24 h of antibiotic commencement (n = 36 in Phase 1, n = 18 in Phase 2). In these participants, ID-ODS™ was associated with a reduction in time to target antibiotic exposure (96 vs 36.4 h in Phase 1 and Phase 2, respectively, p < 0.01). These patients were less likely to exhibit subtherapeutic antibiotic exposures at 96 h (hazard ratio (HR) 0.02, 95% confidence interval (CI) 0.01-0.05, p < 0.01). There was no difference observed in in-hospital mortality. CONCLUSIONS: Dosing software may reduce the time to achieve target antibiotic exposures. It should be evaluated further in trials to establish its impact on clinical outcomes
    • …
    corecore