123 research outputs found

    Marine-derived Fungi: Diversity Of Enzymes And Biotechnological Applications

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)The ocean is considered to be a great reservoir of biodiversity. Microbial communities in marine environments are ecologically relevant as intermediaries of energy, and play an important role in nutrient regeneration cycles as decomposers of dead and decaying organic matter. In this sense, marine-derived fungi can be considered as a source of enzymes of industrial and/or environmental interest. Fungal strains isolated from different substrates, such as invertebrates, decaying wood, seawater, sediments, and mangrove detritus, have been reported to be producers of hydrolytic and/or oxidative enzymes, with alginate lyase, amylase, cellulase, chitinase, glucosidase, inulinase, keratinase, ligninase, lipase, nuclease, phytase, protease, and xylanase being among the enzymes produced by fungi of marine origin. These enzymes present temperature and pH optima ranging from 35 to 70 degrees C, and 3.0 to 11.0, respectively. High-level production in bioreactors is mainly performed using submerged-state fermentation. Certain marine-derived fungal strains present enzymes with alkaline and cold-activity characteristics, and salinity is considered an important condition in screening and production processes. The adaptability of marine-derived fungi to oceanic conditions can be considered an attractive point in the field of fungal marine biotechnology. In this review, we focus on the advances in discovering enzymes from marine-derived fungi and their biotechnological relevance.6Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)FAPESP [2013/19486-0, 2013/08617-7]CNPq [304103/2013-6, 301248/2010-9]FAPESP [FAPESP 2009/18399-1, FAPESP 2011/18769-3, FAPESP 2008/06720-7, FAPESP 2012/12622-3, FAPESP 2013/12505-0, FAPESP 2014/12430-2, CNPq 159488/2014, FAPESP 2013/00286-1

    Twenty years, eight legs, one concept: Describing spider biodiversity in Zootaxa (Arachnida: Araneae)

    Get PDF
    Zootaxa published more than a thousand papers on Araneae from 2002 to the present, including descriptions of 3,833 new spider species and 177 new genera. Here we summarise the key contributions of Zootaxa to our current knowledge of global spider diversity. We provide a historical account of the researchers that have actively participated as editors, and recognize the more than 1,000 reviewers without whom none of this would have been possible. We conduct a simple analysis of the contributions by authors and geographic region, which allows us to uncover some of the underlying trends in current spider taxonomy. In addition, we examine some of the milestones in twenty years of spider systematic research in Zootaxa. Finally, we discuss future prospects of spider taxonomy and the role that Zootaxa and its younger sister journal Megataxa will play in it. We would like to dedicate this contribution to the memory of Norman I. Platnick, a crucial figure in the advancement of spider systematics.Fil: Jäger, Peter. Senckenberg Research Institute; AlemaniaFil: Arnedo, Miquel. Universidad de Barcelona; EspañaFil: Fernandes de Azevedo, Guilherme Henrique. San Diego State University; Estados UnidosFil: Baehr, Barbara. Queensland Museum; AustraliaFil: Bonaldo, Alexandre B.. Museu Paraense Emílio Goeldi; BrasilFil: Haddad, Charles R.. University of the Free State; SudáfricaFil: Harms, Danilo. Universitat Hamburg; AlemaniaFil: Hormiga, Gustavo. The George Washington University; Estados UnidosFil: Labarque, Facundo Martín. Universidade Federal do São Carlos; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Muster, Christoph. No especifíca;Fil: Ramirez, Martin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Santos, Adalberto J.. Universidade Federal de Minas Gerais; Brasi

    Distinct genotypic profiles of the two major clades of Mycobacterium africanum

    Get PDF
    Background: Mycobacterium tuberculosis is the principal etiologic agent of human tuberculosis (TB) and a member of the M. tuberculosis complex (MTC). Additional MTC species that cause TB in humans and other mammals include Mycobacterium africanum and Mycobacterium bovis. One result of studies interrogating recently identified MTC phylogenetic markers has been the recognition of at least two distinct lineages of M. africanum, known as West African-1 and West African-2. Methods: We screened a blinded non-random set of MTC strains isolated from TB patients in Ghana (n = 47) for known chromosomal region-of-difference (RD) loci and single nucleotide polymorphisms (SNPs). A MTC PCR-typing panel, single-target standard PCR, multi-primer PCR, PCR-restriction fragment analysis, and sequence analysis of amplified products were among the methods utilized for the comparative evaluation of targets and identification systems. The MTC distributions of novel SNPs were characterized in the both the Ghana collection and two other diverse collections of MTC strains (n = 175 in total). Results: The utility of various polymorphisms as species-, lineage-, and sublineage-defining phylogenetic markers for M. africanum was determined. Novel SNPs were also identified and found to be specific to either M. africanum West African-1 (Rv1332 523; n = 32) or M. africanum West African-2 (nat 751; n = 27). In the final analysis, a strain identification approach that combined multi-primer PCR targeting of the RD loci RD9, RD10, and RD702 was the most simple, straight-forward, and definitive means of distinguishing the two clades of M. africanum from one another and from other MTC species. Conclusion: With this study, we have organized a series of consistent phylogenetically-relevant markers for each of the distinct MTC lineages that share the M. africanum designation. A differential distribution of each M. africanum clade in Western Africa is described

    Uma utopia brasileira: Vargas e a construção do estado de bem-estar numa sociedade estruturalmente desigual

    Full text link
    corecore