100 research outputs found

    Effects of piperaquine, chloroquine, and amodiaquine on drug uptake and of these in combination with dihydroartemisinin against drug-sensitive and -resistant Plasmodium falciparum strains.

    No full text
    Piperaquine is being developed as a long-acting component in artemisinin combination therapies. It was highly active in vitro and drug interaction studies showed that dihydroartemisinin combinations with piperaquine, chloroquine, and amodiaquine were indifferent tending toward antagonism. Competitive uptake of radiolabeled chloroquine and dihydroartemisinin in combination with other antimalarials was observed

    Malarone treatment failure and in vitro confirmation of resistance of Plasmodium falciparum isolate from Lagos, Nigeria

    Get PDF
    We report the first in vitro and genetic confirmation of Malarone(®) (GlaxoSmithKline; atovaquone and proguanil hydrochloride) resistance in Plasmodium falciparum acquired in Africa. On presenting with malaria two weeks after returning from a 4-week visit to Lagos, Nigeria without prophylaxis, a male patient was given a standard 3-day treatment course of Malarone(®). Twenty-eight days later the parasitaemia recrudesced. Parasites were cultured from the blood and the isolate (NGATV01) was shown to be resistant to atovaquone and the antifolate pyrimethamine. The cytochrome b gene of isolate NGATV01 showed a single mutation, Tyr268Asn which has not been seen previously

    The relationship of physico-chemical properties and structure to the differential antiplasmodial activity of the cinchona alkaloids

    Get PDF
    BACKGROUND: The 8-amino and 9-hydroxy substituents of antimalarial cinchona alkaloids have the erythro orientation while their inactive 9-epimers are threo. From the X-ray structures a 90° difference in torsion angle between the N1-H1 and C9-O12 bonds in the two series is believed to be important. In order to kill the malaria parasite, alkaloids must cross the erythrocyte and parasite membranes to accumulate in the acid digestive vacuole where they prevent detoxication of haematin produced during haemoglobin breakdown. METHODS: Ionization constants, octanol/water distribution and haematin interaction are examined for eight alkaloids to explain the influence of small structural differences on activity. RESULTS: Erythro isomers have a high distribution ratio of 55:1 from plasma to the erythrocyte membrane, while for the more basic threo epimers this is only 4.5:1. This gives an increased transfer rate of the erythro drugs into the erythrocyte and thence into the parasite vacuole where their favourable conformation allows interaction with haematin, inhibiting its dimerization strongly (90 ± 7%) and thereby killing the parasite. The threo compounds not only enter more slowly but are then severely restricted from binding to haematin by the gauche alignment of their N1-H1 and C9-O12 bonds. Confirmatory molecular models allowed measurement of angles and bond lengths and computation of the electronic spectrum of a quinine-haematin complex. CONCLUSION: Differences in the antiplasmodial activity of the erythro and threo cinchona alkaloids may therefore be attributed to the cumulative effects of lipid/aqueous distribution ratio and drug-haematin interaction. Possible insights into the mechanism of chloroquine-resistance are discussed

    Stable expression of Escherichia coli {beta}-glucuronidase A (GusA) in Giardia lamblia: application to high-throughput drug susceptibility testing

    Get PDF
    Objectives In order to create a suitable model for high-throughput drug screening, a Giardia lamblia WB C6 strain expressing Escherichia coli glucuronidase A (GusA) was created and tested with respect to susceptibility to the anti-giardial drugs nitazoxanide and metronidazole. Methods GusA, a well-established reporter gene in other systems, was cloned into the vector pPacVInteg allowing stable expression in G. lamblia under control of the promoter from the glutamate dehydrogenase (gdh) gene. The resulting transgenic strain was compared with the wild-type strain in a vitality assay, characterized with respect to susceptibility to nitazoxanide, metronidazole and-as assessed in a 96-well plate format-to a panel of 15 other compounds to be tested for anti-giardial activity. Results GusA was stably expressed in G. lamblia. Using a simple glucuronidase assay protocol, drug efficacy tests yielded results similar to those from cell counting. Conclusions G. lamblia WB C6 GusA is a suitable tool for high-throughput anti-giardial drug screening

    Chloroquine Susceptibility and Reversibility in a Plasmodium falciparum Genetic Cross

    Get PDF
    Mutations in the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT), are major determinants of verapamil (VP)-reversible CQ resistance (CQR). In the presence of mutant PfCRT, additional genes contribute to the wide range of CQ susceptibilities observed. It is not known if these genes influence mechanisms of chemosensitization by CQR reversal agents. Using quantitative trait locus (QTL) mapping of progeny clones from the HB3 × Dd2 cross, we show that the P. falciparum multidrug resistance gene 1 (pfmdr1) interacts with the Southeast Asiaderived mutant pfcrt haplotype to modulate CQR levels. A novel chromosome 7 locus is predicted to contribute with the pfcrt and pfmdr1 loci to influence CQR levels. Chemoreversal via a wide range of chemical structures operates through a direct pfcrt-based mechanism. Direct inhibition of parasite growth by these reversal agents is influenced by pfcrt mutations and additional loci. Direct labeling of purified recombinant PfMDR1 protein with a highly specific photoaffinity CQ analogue, and lack of competition for photolabeling by VP, supports our QTL predictions. We find no evidence that pfmdr1 copy number affects CQ response in the progeny, however, inheritance patterns indicate that an allele-specific interaction between pfmdr1 and pfcrt is part of the complex genetic background of CQR

    Can pretreatment screening for dhps and dhfr point mutations in Plasmodium falciparum infections be used to predict sulfadoxine-pyrimethamine treatment failure?

    Get PDF
    This study examines the relationship between malaria treatment failure after sulfadoxine-pyrimethamine (S-P) chemotherapy and presence of mutations in the Plasmodium falciparum dihydropteroate synthase (dhps) and dihydrofolate reductase (dhfr) genes (associated with resistance in vitro to S and P) before treatment. In Kenya, 38 malaria patients in a holoendemic area, and 21 in an epidemic area, participated in the trial in 1997-98. In the 2 areas, drug failure occurred in 76% and 75% of cases where any mutation in dhfr was seen (positive predictive values 76% and 75%: P = 0.003 and 0.008) and an identical association was seen with dhfr Asn-108. In the holoendemic area all occurrences of > or = 2 mutations in dhfr predicted drug failure. Only 3 instances were seen in the epidemic focus, but treatment failed in all. Only in the epidemic focus, 7 (88%) of 8 occurrences of > or = 1 mutations in dhps, and all occurrences of the Gly-437 allele of dhps, predicted failure. Association between mutations in dhps and mutations in dhfr was noted in the combined sites, irrespective of outcome. Although this makes the relationship of combined dhfr and dhps mutations to failure more difficult to interpret, it nevertheless supports S-P selection acting on both genes. In the holoendemic site, treatment success increased with age. In this location, acquired immunity may mask the impact of mutations in dhps, since sulfadoxine is a less effective treatment than pyrimethamine

    Plasmodium falciparum: linkage disequilibrium between loci in chromosomes 7 and 5 and chloroquine selective pressure in Northern Nigeria.

    Get PDF
    In view of the recent discovery (Molecular Cell 6, 861-871) of a (Lys76Thr) codon change in gene pfcrt on chromosome 7 which determines in vitro chloroquine resistance in Plasmodium falciparum, we have re-examined samples taken before treatment in our study in Zaria, Northern Nigeria (Parasitology, 119, 343-348). Drug resistance was present in 5/5 cases where the pfcrt 76Thr codon change was seen (100% positive predictive value). Drug sensitivity was found in 26/28 cases where the change was absent (93% negative predictive value). Allele pfcrt 76Thr showed strong linkage disequilibrium with pfmdr1 Tyr86 on chromosome 5, more complete than that between pfcrt and cg2 alleles situated between recombination cross-over points on chromosome 7. Physical linkage of cg2 with pfcrt may account for linkage disequilibrium between their alleles but in the case of genes pfmdr1 and pfcrt, on different chromosomes, it is likely that this is maintained epistatically through the selective pressure of chloroquine

    Co-trimoxazole compared with sulfadoxine-pyrimethamine in the treatment of uncomplicated malaria in Kenyan children.

    Get PDF
    Sulfadoxine-pyrimethamine (SP) and co-trimoxazole were both effective in reducing fever, clearing parasitaemia and improving anaemia in children aged < 5 years with uncomplicated malaria in 2 Kenyan endemic sites, Oyugis in the west and Tiwi on the coast. We compared the efficacy of these 2 regimens (in May-July 1998) by evaluating clinical and parasitological responses over 14 days. The combined incidence of parasitological failure for the combined sites for co-trimoxazole was 14/123 (11%) and for SP 23/145 (16%) (RR 0.72, 95% confidence interval [CI] 0.31-1.46, P = 0.289). The 14-day clinical failure rate for the combined sites for co-trimoxazole was 4/123 (3.3%), and for SP 8/145 (5.5%), (RR 1.69, 95% CI 0.91-3.15, P = 0.129). The results indicate that the risk of treatment failure for the 2 regimens was similar. The antimalarial use of co-trimoxazole in uncomplicated malaria needs further investigation, since the 10-12-h elimination half-life of both components should reduce selective pressure for resistance. In addition, use of a 2-day high-dose course, tested previously, requires further study to demonstrate its efficacy
    • …
    corecore