89 research outputs found
Mechanisms of hypnosis: toward the development of a biopsychosocial model
Evidence supports the efficacy of hypnotic treatments, but there remain many unresolved questions regarding how hypnosis produces its beneficial effects. Most theoretical models focus more or less on biological, psychological, and social factors. This scoping review summarizes the empirical findings regarding the associations between specific factors in each of these domains and response to hypnosis. The findings indicate that (a) no single factor appears primary, (b) different factors may contribute more or less to outcomes in different subsets of individuals or for different conditions, and (c) comprehensive models of hypnosis that incorporate factors from all 3 domains may ultimately prove to be more useful than more restrictive models that focus on just 1 or a very few factors
Differential roles of prostaglandin E-type receptors in activation of hypoxia-inducible factor 1 by prostaglandin E1 in vascular-derived cells under non-hypoxic conditions
Prostaglandin E1 (PGE1), known pharmaceutically as alprostadil, has vasodilatory properties and is used widely in various clinical settings. In addition to acute vasodilatory properties, PGE1 may exert beneficial effects by altering protein expression of vascular cells. PGE1 is reported to be a potent stimulator of angiogenesis via upregulation of VEGF expression, which is under the control of the transcription factor hypoxia-inducible factor 1 (HIF-1). However, the molecular mechanisms behind the phenomenon are largely unknown. In the present study, we investigated the mechanism by which PGE1 induces HIF-1 activation and VEGF gene expression in human aortic smooth muscle cells (HASMCs) and human umbilical vein endothelial cells (HUVECs), both vascular-derived cells. HUVECs and HASMCs were treated with PGE1 at clinically relevant concentrations under 20% O2 conditions and HIF-1 protein expression was investigated. Expression of HIF- 1α protein and the HIF-1-downstream genes were low under 20% O2 conditions and increased in response to PGE1 treatment in both HUVECs and HASMCs in a dose- and time-dependent manner under 20% O2 conditions as comparable to exposure to 1% O2 conditions. Studies using EP-receptor-specific agonists and antagonists revealed that EP1 and EP3 are critical to PGE1-induced HIF-1 activation. In vitro vascular permeability assays using HUVECs indicated that PGE1 increased vascular permeability in HUVECs. Thus, we demonstrate that PGE1 induces HIF- 1α protein expression and HIF-1 activation under non-hypoxic conditions and also provide evidence that the activity of multiple signal transduction pathways downstream of EP1 and EP3 receptors is required for HIF-1 activation
An Oceanic Impact of the Kuroshio on Surface Air Temperature on the Pacific Coast of Japan in Summer: Regional H2O Greenhouse Gas Effect
This study used a 4-kmresolution regional climate model to examine the sensitivity of surface air temperature on the Pacific coast of Japan to sea surface temperature (SST) south of the Pacific coast of Japan during summer. The authors performed a control simulation (CTL) driven by reanalysis and observational SST datasets. A series of sensitivity experiments using climatological values from the CTL SST datasets over a 31-yr period was conducted. The interannual variation in surface air temperature over the Pacific coast was well simulated in CTL. The interannual variation in SST over the Kuroshio region amplified the interannual variation in surface air temperature over the Pacific coast. It was found that 30% of the total variance of interannual variation in surface air temperature can be controlled by interannual variation in SST. The calculated surface air temperature on the Pacific coast increased by 0.4K per 1-K SST warming in the Kuroshio region. Note that this sensitivity was considerably greater during nighttime than during daytime. Concurrent with the warming in surface air temperature, downward longwave radiation at the surface was also increased. In summer, the increase in latent heat flux was considerably larger than that in sensible heat flux over the ocean because of SST warming, according to the temperature dependence of the Bowen ratio. This implies that the primary factor for the increase in surface air temperature in summer is increased moisture in the lower troposphere, indicating that the regional warming was caused by an increase in H2O greenhouse gas
Pilot study of a basic individualized cognitive behavioral therapy program for chronic pain in Japan
Background: Chronic pain is a major health problem, and cognitive behavioral therapy (CBT) is its recommended treatment; however, efforts to develop CBT programs for chronic pain and assess their feasibility are remarkably delayed in Asia. Therefore, we conducted this pilot study to develop a basic individualized CBT for chronic pain (CBT-CP) and assessed its feasibility for use in Japan.
Methods: Our study was an open-labeled before–after trial without a control group conducted cooperatively in five Japanese tertiary care hospitals. Of 24 outpatients, 15, age 20–80, who experienced chronic pain for at least three months were eligible. They underwent an eight-session CBT-CP consisting of relaxation via a breathing method and progressive muscle relaxation, behavioral modification via activity pacing, and cognitive modification via cognitive reconstruction. The EuroQol five-dimensional questionnaire five level (EQ5D-5 L) assessment as the primary outcome and quality of life (QOL), pain severity, disability, catastrophizing, self-efficacy, and depressive symptoms as secondary outcomes were measured using self-administered questionnaires at baseline, post-treatment, and 3-month follow-up. Intention-to-treat analyses were conducted.
Results: Effect size for EQ5D-5 L score was medium from baseline to post-treatment (Hedge’s g = − 0.72, 90% confidence interval = − 1.38 to − 0.05) and up to the 3-month follow-up (g = − 0.60, CI = − 1.22 to 0.02). Effect sizes for mental and role/social QOL, disability, catastrophizing, self-efficacy, and depressive symptoms were medium to large, although those for pain severity and physical QOL were small. The dropout rate was acceptably low at 14%. No severe adverse events occurred.
Conclusion: The findings suggest that CBT-CP warrants a randomized controlled trial in Japan
Magnetic thickness measurement for various iron steels using magnetic sensor and effect of electromagnetic characteristics
The diagnosis and prevention of the deterioration of iron-steel infrastructure has become an important social issue in recent years. The thickness measurement technique (extremely low-frequency eddy current testing (ELECT)) using a magnetic sensor for detecting steel corrosion at extreme frequency ranges has been previously reported. Using the calibration curves based on the correlation between the phase of the detected magnetic signal and the plate thickness, the plate thickness reduction caused by corrosion can be estimated from the detected phase signal. Iron-steel materials have large changes in electromagnetic characteristics; therefore, the reference calibration data for each type of iron-steel are required for plate thickness estimation. In this study, the effect of electromagnetic characteristics on the magnetic thickness measurement was investigated to improve the thickness estimation. Four types of iron-steel plates (SS400, SM400A, SM490A, and SMA400AW) with thicknesses ranging from 1 mm to 18 mm were measured by ELECT, and the phase change at multiple frequencies of each plate were analyzed. The shift in the phase and linearity regions of the calibration curves for each type of steel plate was observed. To analyze this shift phenomenon, the electromagnetic characteristics (permeability μ and conductivity σ) of each type of steel were measured. Compared with the permeability μ and conductivity σ of each steel plate in the applied magnetic field strength range, the product (σμ) for various steel plates decreased in the following order: SM400 > SS400 >SMA400AW > SM490A. The product of μ and σ is related to the skin depth, indicating the electromagnetic wave attenuation and eddy current phase shift in the material. Therefore, each shift in the calibration curve of each type of iron steel is explained by the changes in the parameters σ and μ
Japanese cross-cultural validation study of the Pain Stage of Change Questionnaire.
Introduction:Although evidence supports efficacy of treatments that enhance self-management of chronic pain, the efficacy of these treatments has been hypothesized to be influenced by patient readiness for self-management. The Pain Stage of Change Questionnaire (PSOCQ) is a reliable and valid measure of patient readiness to self-manage pain. However, there is not yet a Japanese version of the PSOCQ (PSOCQ-J), which limits our ability to evaluate the role of readiness for pain self-management in function and treatment response in Japanese patients with chronic pain.Objective:Here, we sought to develop the PSOCQ-J and evaluate its psychometric properties.Methods:We recruited 201 patients with chronic pain. The study participants were asked to complete the PSOCQ-J and other measures assessing pain severity, pain interference, catastrophizing, self-efficacy, and pain coping strategies.Results:The results supported a 4-factor structure of the PSOCQ-J. We also found good to excellent internal consistencies and good test-retest reliabilities for the 4 scales. The Precontemplation scale had weak to moderate positive correlations with measures of pain-related dysfunction and maladaptive coping. The Action and Maintenance scales had weak to moderate positive correlations with measures of self-efficacy and adaptive coping. The Contemplation scale had weak positive correlations with measures of pain interference and both adaptive and maladaptive coping.Conclusions:The PSOCQ-J demonstrated adequate psychometric properties in a sample of Japanese patients with chronic pain. This measure can be used to evaluate the role that readiness to self-manage pain may play in adjustment to chronic pain in Japanese pain populations
Id2-, RORγt-, and LTβR-independent initiation of lymphoid organogenesis in ocular immunity
The eye is protected by the ocular immunosurveillance system. We show that tear duct–associated lymphoid tissue (TALT) is located in the mouse lacrimal sac and shares immunological characteristics with mucosa-associated lymphoid tissues (MALTs), including the presence of M cells and immunocompetent cells for antigen uptake and subsequent generation of mucosal immune responses against ocularly encountered antigens and bacteria such as Pseudomonas aeruginosa. Initiation of TALT genesis began postnatally; it occurred even in germ-free conditions and was independent of signaling through organogenesis regulators, including inhibitor of DNA binding/differentiation 2, retinoic acid–related orphan receptor γt, lymphotoxin (LT) α1β2–LTβR, and lymphoid chemokines (CCL19, CCL21, and CXCL13). Thus, TALT shares immunological features with MALT but has a distinct tissue genesis mechanism and plays a key role in ocular immunity
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
Unraveling pain experience and catastrophizing after cognitive behavioral therapy
Abstract Pain experiences are often complex with catastrophic cognitions, emotions, and behaviors. Cognitive behavioral therapists share the work of unraveling these complex experiences with their patients. However, the change process underlying the unraveling of the pain experience have not yet been quantified. We used an interrelationship-focused network model to examine the way an undifferentiated conceptualization between cognition and pain experience changed via group cognitive-behavioral therapy (CBT). Overall, 65 participants (77.4% of all patients who entered the intervention) were included in the analysis; they attended the total of 12 weekly group CBT and filled the Short-Form McGill Pain Questionnaire and the pain catastrophizing questionnaire. Before treatment, there were no edges in the partial correlation-based network because of large covariation across items. After treatment, many edges appeared and, particularly strong couplings were found between items within the same subscale. The formative shift from a non-edged pre-treatment network to a mature post-treatment network may indicate that patients were able to conceptualize these symbolic constructs better. These results are probably of interest to clinicians and would be consistent with the fundamental monitoring process of CBT
- …