75 research outputs found

    Role of sox9 in growth factor regulation of articular chondrocytes

    Get PDF
    Chondrogenic polypeptide growth factors influence articular chondrocyte functions that are required for articular cartilage repair. Sox9 is a transcription factor that regulates chondrogenesis, but its role in the growth factor regulation of chondrocyte proliferation and matrix synthesis is poorly understood. We tested the hypotheses that selected chondrogenic growth factors regulate sox9 gene expression and protein production by adult articular chondrocytes and that sox9 modulates the actions of these growth factors. To test these hypotheses, we delivered insulin-like growth factor-I (IGF-I), fibroblast growth factor-2 (FGF-2), bone morphogenetic protein-2 (BMP-2) and/or bone morphogenetic protein-7 (BMP-7), or their respective transgenes to adult bovine articular chondrocytes, and measured changes in sox9 gene expression and protein production. We then knocked down sox9 gene expression with sox9 siRNA, and measured changes in the expression of the genes encoding aggrecan and types I and II collagen, and in the production of glycosaminoglycan, collagen and DNA. We found that FGF-2 or the combination of IGF-I, BMP-2, and BMP-7 increased sox9 gene expression and protein production and that sox9 knockdown modulated growth factor actions in a complex fashion that differed both with growth factors and with chondrocyte function. The data suggest that sox9 mediates the stimulation of matrix production by the combined growth factors and the stimulation of chondrocyte proliferation by FGF-2. The mitogenic effect of the combined growth factors and the catabolic effect of FGF-2 appear to involve sox9-independent mechanisms. Control of these molecular mechanisms may contribute to the treatment of cartilage damage

    Hepatocyte growth factor regulates neovascularization in developing fat pads

    Get PDF
    In this study, we used lentiviral-delivered shRNA to generate a clonal line of 3T3-F442A preadipocytes with stable silencing of hepatocyte growth factor (HGF) expression and examined the long-term consequence of this modification on fat pad development. HGF mRNA expression was reduced 94%, and HGF secretion 79% (P < 0.01), compared with preadipocytes treated with nontargeting shRNA. Fat pads derived from HGF knockdown preadipocytes were significantly smaller (P < 0.01) than control pads beginning at 3 days postinjection (0.022 ± 0.003 vs. 0.037 ± 0.004 g), and further decreased in size at day 7 (0.015 ± 0.004 vs. 0.037 ± 0.003 g) and day 14 (0.008 ± 0.002 vs. 0.045 ± 0.007 g). Expression of the endothelial cell genes TIE1 and PECAM1 increased over time in control fat pads (1.6 ± 0.4 vs. 11.4 ± 1.7 relative units at day 3 and 14, respectively; P < 0.05) but not in HGF knockdown fat pads (1.1 ± 0.5 vs. 5.9 ± 2.2 relative units at day 3 and 14). Contiguous vascular structures were observed in control fat pads but were much less developed in HGF knockdown fat pads. Differentiation of preadipocytes to mature adipocytes was significantly attenuated in HGF knockdown fat pads. Fat pads derived from preadipocytes with knockdown of the HGF receptor c-MET were smaller than control pads at day 3 postinjection (0.034 ± 0.002 vs. 0.049 ± 0.004 g; P < 0.05), and remained the same size through day 14. c-MET knockdown fat pads developed a robust vasculature, and preadipocytes differentiated to mature adipocytes. Overall these data suggest that preadipocyte-secreted HGF is an important regulator of neovascularization in developing fat pads

    Serum fibroblast growth factor 23, serum iron and bone mineral density in premenopausal women

    Get PDF
    Fibroblast growth factor 23 (FGF23) circulates as active protein and inactive fragments. Low iron status increases FGF23 gene expression, and iron deficiency is common. We hypothesized that in healthy premenopausal women, serum iron influences C-terminal and intact FGF23 concentrations, and that iron and FGF23 associate with bone mineral density (BMD). Serum iron, iron binding capacity, percent iron saturation, phosphorus, and other biochemistries were measured in stored fasting samples from healthy premenopausal white (n=1898) and black women (n=994), age 20-55years. Serum C-terminal and intact FGF23 were measured in a subset (1631 white and 296 black women). BMD was measured at the lumbar spine and femur neck. Serum phosphorus, calcium, alkaline phosphatase and creatinine were lower in white women than black women (p<0.001). Serum iron (p<0.0001) and intact FGF23 (p<0.01) were higher in white women. C-terminal FGF23 did not differ between races. Phosphorus correlated with intact FGF23 (white women, r=0.120, p<0.0001; black women r=0.163, p<0.01). However, phosphorus correlated with C-terminal FGF23 only in black women (r=0.157, p<0.01). Intact FGF23 did not correlate with iron. C-terminal FGF23 correlated inversely with iron (white women r=-0.134, p<0.0001; black women r=-0.188, p<0.01), having a steeper slope at iron <50mcg/dl than ≥50mcg/dl. Longitudinal changes in iron predicted changes in C-terminal FGF23. Spine BMD correlated with iron negatively (r=-0.076, p<0.01) in white women; femur neck BMD correlated with iron negatively (r=-0.119, p<0.0001) in black women. Both relationships were eliminated in weight-adjusted models. BMD did not correlate with FGF23. Serum iron did not relate to intact FGF23, but was inversely related to C-terminal FGF23. Intact FGF23 correlated with serum phosphorus. In weight-adjusted models, BMD was not related to intact FGF23, C-terminal FGF23 or iron. The influence of iron on FGF23 gene expression is not important in determining bone density in healthy premenopausal women

    In Situ Type I Oligomeric Collagen Macroencapsulation Promotes Islet Longevity and Function in Vitro and in Vivo

    Get PDF
    Widespread use of pancreatic islet transplantation for treatment of type 1 diabetes (T1D) is currently limited by requirements for long-term immunosuppression, limited donor supply, and poor long-term engraftment and function. Upon isolation from their native microenvironment, islets undergo rapid apoptosis, which is further exacerbated by poor oxygen and nutrient supply following infusion into the portal vein. Identifying alternative strategies to restore critical microenvironmental cues, while maximizing islet health and function, is needed to advance this cellular therapy. We hypothesized that biophysical properties provided through type I oligomeric collagen macroencapsulation are important considerations when designing strategies to improve islet survival, phenotype, and function. Mouse islets were encapsulated at various Oligomer concentrations (0.5–3.0 mg/ml) or suspended in media and cultured for 14 days, after which viability, protein expression, and function were assessed. Oligomer-encapsulated islets showed a density-dependent improvement in in vitro viability, cytoarchitecture, and insulin secretion, with 3 mg/ml yielding values comparable to freshly isolated islets. For transplantation into streptozotocin-induced diabetic mice, 500 islets were mixed in Oligomer and injected subcutaneously, where rapid in situ macroencapsulation occurred, or injected with saline. Mice treated with Oligomer-encapsulated islets exhibited rapid (within 24 h) diabetes reversal and maintenance of normoglycemia for 14 (immunocompromised), 90 (syngeneic), and 40 days (allogeneic). Histological analysis showed Oligomer-islet engraftment with maintenance of islet cytoarchitecture, revascularization, and no foreign body response. Oligomer-islet macroencapsulation may provide a useful strategy for prolonging the health and function of cultured islets and has potential as a subcutaneous injectable islet transplantation strategy for treatment of T1D

    Ghrelin is not Related to Hunger or Calories Consumed at Breakfast in Lean and Obese Women

    Get PDF
    poster abstractBackground: The mechanisms that result in greater caloric intake in obese individuals are incompletely understood. Ghrelin administration increases ad lib food intake in humans. We investigated the relationship of ghrelin to calorie consumption and hunger at breakfast on two separate occasions in lean and obese women. Methods: 23 lean (BMI 22.3±0.5 kg/m2, 26.5±1.0 yr) and 25 obese (BMI 36.9±0.7 kg/m2, 27.8±1.1 yr) women participated in a noncontiguous 2 day study. The minimum and maximum days between visits were 6 and 43 days. Participants were given the same breakfast on both days (turkey sausage, French toast with margarine/syrup, fruit cup, coffee, tea, diet soda, or water) with portions adjusted to provide 20% of the daily energy requirement for weight maintenance. Subjects were instructed to eat until full. Hunger was evaluated on a Satiety Labeled Intensity Magnitude Scale (SLIM) before and after the meal. Anchors were “greatest imaginable fullness” at 0 and “greatest imaginable hunger” at 100. Blood samples were collected over 120 minutes for measurement of active ghrelin. Results: Lean subjects consumed an equivalent number of calories on both days (380.0±14.6 vs 378.2±14.9 kcal), as did the obese (419.4±16.2 vs 428.8±15.4 kcal). On average for both days, obese consumed significantly more breakfast calories than lean (424.1±11.1 vs 379.1±10.3 kcal; P<0.01), but the same percentage of calories provided (85.7±1.8 vs 86.1±1.7 %kcal). Lean subjects rated hunger before breakfast the same on both days (69.2±1.6 vs 71.7±1.4), as did the obese (69.8±1.6 vs 69.6±1.8), and there was no difference between the groups. Lean subjects rated hunger after breakfast the same on both days (27.8±1.9 vs 30.3±2.4), as did the obese (25.0±1.7 vs 24.3±1.8). The reduction in hunger score following breakfast was significant for both groups (P<0.0001), with the obese reporting significantly less hunger/more fullness after breakfast than the lean (P=0.02). Fasting ghrelin was significantly greater in the lean than obese women (549.9±58.9 vs 231.0±29.1 pg/ml; P<0.0001). Ghrelin was significantly reduced at 60 min following breakfast in the lean (375.8±49.2 pg/ml; P=0.028) but not the obese (212.2±26.4 pg/ml). Ghrelin was not related to hunger score prior to breakfast, and there was no relationship between reduction in ghrelin and hunger score in the lean or obese. Conclusion: Caloric intake (as a percentage provided) and hunger scores before breakfast on two occasions were the same for both lean and obese women. Fasting ghrelin was significantly different between lean and obese women but did not predict hunger score or calories consumed. Our findings do not support a role for ghrelin in driving food intake at breakfast

    The apéritif effect: Alcohol's effects on the brain's response to food aromas in women

    Get PDF
    OBJECTIVE: Consuming alcohol prior to a meal (an apéritif) increases food consumption. This greater food consumption may result from increased activity in brain regions that mediate reward and regulate feeding behavior. Using functional magnetic resonance imaging, we evaluated the blood oxygenation level dependent (BOLD) response to the food aromas of either roast beef or Italian meat sauce following pharmacokinetically controlled intravenous infusion of alcohol. METHODS: BOLD activation to food aromas in non-obese women (n = 35) was evaluated once during intravenous infusion of 6% v/v EtOH, clamped at a steady-state breath alcohol concentration of 50 mg%, and once during infusion of saline using matching pump rates. Ad libitum intake of roast beef with noodles or Italian meat sauce with pasta following imaging was recorded. RESULTS: BOLD activation to food relative to non-food odors in the hypothalamic area was increased during alcohol pre-load when compared to saline. Food consumption was significantly greater, and levels of ghrelin were reduced, following alcohol. CONCLUSIONS: An alcohol pre-load increased food consumption and potentiated differences between food and non-food BOLD responses in the region of the hypothalamus. The hypothalamus may mediate the interplay of alcohol and responses to food cues, thus playing a role in the apéritif phenomenon

    Metabolic improvements following Roux-en-Y surgery assessed by solid meal test in subjects with short duration type 2 diabetes

    Get PDF
    BACKGROUND: Glucose homeostasis improves within days following Roux-en-Y gastric bypass (RYGB) surgery. The dynamic metabolic response to caloric intake following RYGB has been assessed using liquid mixed meal tolerance tests (MMTT). Few studies have evaluated the glycemic and hormonal response to a solid mixed meal in subjects with diabetes prior to, and within the first month following RYGB. METHODS: Seventeen women with type 2 diabetes of less than 5 years duration participated. Fasting measures of glucose homeostasis, lipids and gut hormones were obtained pre- and post-surgery. MMTT utilizing a solid 4 oz chocolate pudding performed pre-, 2 and 4 weeks post-surgery. Metabolic response to 4 and 2 oz MMTT assessed in five diabetic subjects not undergoing surgery. RESULTS: Significant reductions in fasting glucose and insulin at 3 days, and in fasting betatrophin, triglycerides and total cholesterol at 2 weeks post-surgery. Hepatic insulin clearance was greater at 3 days post-surgery. Subjects exhibited less hunger and greater feelings of fullness and satisfaction during the MMTT while consuming 52.9 ± 6.5% and 51.0 ± 6.5% of the meal at 2 and 4 weeks post-surgery respectively. At 2 weeks post-surgery, glucose and insulin response to MMTT were improved, with greater GLP-1 and PYY secretion. Improved response to solid MMTT not replicated by consumption of smaller pudding volume in diabetic non-surgical subjects. CONCLUSIONS: With a test meal of size and composition representative of the routine diet of post-RYGB subjects, improved glycemic and gut hormone responses occur which cannot be replicated by reducing the size of the MMTT in diabetic subjects not undergoing surgery

    Effect of Systemic Iron Overload and a Chelation Therapy in a Mouse Model of the Neurodegenerative Disease Hereditary Ferritinopathy

    Get PDF
    Mutations in the ferritin light chain (FTL) gene cause the neurodegenerative disease neuroferritinopathy or hereditary ferritinopathy (HF). HF is characterized by a severe movement disorder and by the presence of nuclear and cytoplasmic iron-containing ferritin inclusion bodies (IBs) in glia and neurons throughout the central nervous system (CNS) and in tissues of multiple organ systems. Herein, using primary mouse embryonic fibroblasts from a mouse model of HF, we show significant intracellular accumulation of ferritin and an increase in susceptibility to oxidative damage when cells are exposed to iron. Treatment of the cells with the iron chelator deferiprone (DFP) led to a significant improvement in cell viability and a decrease in iron content. In vivo, iron overload and DFP treatment of the mouse model had remarkable effects on systemic iron homeostasis and ferritin deposition, without significantly affecting CNS pathology. Our study highlights the role of iron in modulating ferritin aggregation in vivo in the disease HF. It also puts emphasis on the potential usefulness of a therapy based on chelators that can target the CNS to remove and redistribute iron and to resolubilize or prevent ferritin aggregation while maintaining normal systemic iron stores

    Intermittent PI3Kδ inhibition sustains anti-tumour immunity and curbs irAEs

    Get PDF
    Phosphoinositide 3-kinase δ (PI3Kδ) has a key role in lymphocytes, and inhibitors that target this PI3K have been approved for treatment of B cell malignancies1-3. Although studies in mouse models of solid tumours have demonstrated that PI3Kδ inhibitors (PI3Kδi) can induce anti-tumour immunity4,5, its effect on solid tumours in humans remains unclear. Here we assessed the effects of the PI3Kδi AMG319 in human patients with head and neck cancer in a neoadjuvant, double-blind, placebo-controlled randomized phase II trial (EudraCT no. 2014-004388-20). PI3Kδ inhibition decreased the number of tumour-infiltrating regulatory T (Treg) cells and enhanced the cytotoxic potential of tumour-infiltrating T cells. At the tested doses of AMG319, immune-related adverse events (irAEs) required treatment to be discontinued in 12 out of 21 of patients treated with AMG319, suggestive of systemic effects on Treg cells. Accordingly, in mouse models, PI3Kδi decreased the number of Treg cells systemically and caused colitis. Single-cell RNA-sequencing analysis revealed a PI3Kδi-driven loss of tissue-resident colonic ST2 Treg cells, accompanied by expansion of pathogenic T helper 17 (TH17) and type 17 CD8+ T (TC17) cells, which probably contributed to toxicity; this points towards a specific mode of action for the emergence of irAEs. A modified treatment regimen with intermittent dosing of PI3Kδi in mouse models led to a significant decrease in tumour growth without inducing pathogenic T cells in colonic tissue, indicating that alternative dosing regimens might limit toxicity

    Genome-Wide Association Study Identifies Genetic Loci Associated with Iron Deficiency

    Get PDF
    The existence of multiple inherited disorders of iron metabolism in man, rodents and other vertebrates suggests genetic contributions to iron deficiency. To identify new genomic locations associated with iron deficiency, a genome-wide association study (GWAS) was performed using DNA collected from white men aged ≥25 y and women ≥50 y in the Hemochromatosis and Iron Overload Screening (HEIRS) Study with serum ferritin (SF) ≤ 12 µg/L (cases) and iron replete controls (SF>100 µg/L in men, SF>50 µg/L in women). Regression analysis was used to examine the association between case-control status (336 cases, 343 controls) and quantitative serum iron measures and 331,060 single nucleotide polymorphism (SNP) genotypes, with replication analyses performed in a sample of 71 cases and 161 controls from a population of white male and female veterans screened at a US Veterans Affairs (VA) medical center. Five SNPs identified in the GWAS met genome-wide statistical significance for association with at least one iron measure, rs2698530 on chr. 2p14; rs3811647 on chr. 3q22, a known SNP in the transferrin (TF) gene region; rs1800562 on chr. 6p22, the C282Y mutation in the HFE gene; rs7787204 on chr. 7p21; and rs987710 on chr. 22q11 (GWAS observed P<1.51×10−7 for all). An association between total iron binding capacity and SNP rs3811647 in the TF gene (GWAS observed P = 7.0×10−9, corrected P = 0.012) was replicated within the VA samples (observed P = 0.012). Associations with the C282Y mutation in the HFE gene also were replicated. The joint analysis of the HEIRS and VA samples revealed strong associations between rs2698530 on chr. 2p14 and iron status outcomes. These results confirm a previously-described TF polymorphism and implicate one potential new locus as a target for gene identification
    corecore