2,352 research outputs found

    Adaptive feed array compensation system for reflector antenna surface distortion

    Get PDF
    The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employs the concept of conjugate field matching to adjust the feed array complex excitation coefficients

    Analytical approximation of a distorted reflector surface defined by a discrete set of points

    Get PDF
    Reflector antennas on Earth orbiting spacecrafts generally cannot be described analytically. The reflector surface is subjected to a large temperature fluctuation and gradients, and is thus warped from its true geometrical shape. Aside from distortion by thermal stresses, reflector surfaces are often purposely shaped to minimize phase aberrations and scanning losses. To analyze distorted reflector antennas defined by discrete surface points, a numerical technique must be applied to compute an interpolatory surface passing through a grid of discrete points. In this paper, the distorted reflector surface points are approximated by two analytical components: an undistorted surface component and a surface error component. The undistorted surface component is a best fit paraboloid polynomial for the given set of points and the surface error component is a Fourier series expansion of the deviation of the actual surface points, from the best fit paraboloid. By applying the numerical technique to approximate the surface normals of the distorted reflector surface, the induced surface current can be obtained using physical optics technique. These surface currents are integrated to find the far field radiation pattern

    Analysis of a generalized dual reflector antenna system using physical optics

    Get PDF
    Reflector antennas are widely used in communication satellite systems because they provide high gain at low cost. Offset-fed single paraboloids and dual reflector offset Cassegrain and Gregorian antennas with multiple focal region feeds provide a simple, blockage-free means of forming multiple, shaped, and isolated beams with low sidelobes. Such antennas are applicable to communications satellite frequency reuse systems and earth stations requiring access to several satellites. While the single offset paraboloid has been the most extensively used configuration for the satellite multiple-beam antenna, the trend toward large apertures requiring minimum scanned beam degradation over the field of view 18 degrees for full earth coverage from geostationary orbit may lead to impractically long focal length and large feed arrays. Dual reflector antennas offer packaging advantages and more degrees of design freedom to improve beam scanning and cross-polarization properties. The Cassegrain and Gregorian antennas are the most commonly used dual reflector antennas. A computer program for calculating the secondary pattern and directivity of a generalized dual reflector antenna system was developed and implemented at LeRC. The theoretical foundation for this program is based on the use of physical optics methodology for describing the induced currents on the sub-reflector and main reflector. The resulting induced currents on the main reflector are integrated to obtain the antenna far-zone electric fields. The computer program is verified with other physical optics programs and with measured antenna patterns. The comparison shows good agreement in far-field sidelobe reproduction and directivity

    Special Effects: Antenna Wetting, Short Distance Diversity and Depolarization

    Get PDF
    The Advanced Communication Technology Satellite (ACTS) communications system operates in the Ka frequency band. ACTS uses multiple, hopping, narrow beams and very small aperture terminal (VSAT) technology to establish a system availability of 99.5% for bit-error-rates of 5x 10-7 or better over the continental United States. In order maintain this minimum system availability in all US rain zones, ACTS uses an adaptive rain fade compensation protocol to reduce the impact of signal attenuation resulting from propagation effects. The purpose of this paper is to present the results of system and sub-system characterizations considering the statistical effects of system variances due to antenna wetting and depolarization effects. In addition the availability enhancements using short distance diversity in a sub-tropical rain zone are investigated

    Rain Fade Compensation Alternatives for Ka Band Communication Satellites

    Get PDF
    Future satellite communications systems operating in Ka-band frequency band are subject to degradation produced by the troposphere which is much more severe than those found at lower frequency bands. These impairments include signal absorption by rain, clouds and gases, and amplitude scintillation's arising from refractive index irregularities. For example, rain attenuation at 20 GHz is almost three times that at 11 GHz. Although some of these impairments can be overcome by oversizing the ground station antennas and high power amplifiers, the current trend is using small (less than 20 inches apertures), low-cost ground stations (less than $1000) that can be easily deployed at user premises. As a consequence, most Ka-band systems are expected to employ different forms of fade mitigation that can be implemented relatively easily and at modest cost. The rain fade mitigation approaches are defined by three types of Ka-band communications systems - a low service rate (less than 1.5 Mb/s), a moderate service rate (1.5 to 6 Mb/s) system and a high service rate (greater than 43 Mb/s) system. The ACTS VSAT network, which includes an adaptive rain fade technique, is an example of a moderate service rate

    Active feed array compensation for reflector antenna surface distortions

    Get PDF
    The feasibility of electromagnetic compensation for reflector antenna surface distortions is investigated. The performance characteristics of large satellite communication reflector antenna systems degrade as the reflector surface distorts, mainly due to thermal effects from solar radiation. The technique developed can be used to maintain the antenna boresight directivity and sidelobe level independent of thermal effects on the reflector surface. With the advent of monolithic microwave integrated circuits (MMIC), a greater flexibility in array fed reflector antenna systems can be achieved. MMIC arrays provide independent control of amplitude and phase for each of the many radiating elements in the feed array. By assuming a known surface distortion profile, a simulation study is carried out to examine the antenna performance as a function of feed array size and number of elements. Results indicate that the compensation technique can effectively control boresight directivity and sidelobe level under peak surface distortion in the order of tenth of a wavelength

    Microstrip antenna array with parasitic elements

    Get PDF
    Discussed is the design of a large microstrip antenna array in terms of subarrays consisting of one fed patch and several parasitic patches. The potential advantages of this design are discussed. Theoretical radiation patterns of a subarray in the configuration of a cross are presented

    Detection of reflector surface error from near-field data: Effect of edge diffracted field

    Get PDF
    The surface accuracy of large reflector antennas must be maintained within certain tolerances if high gain/low sidelobe performance is to be achieved. Thus the measurement of the surface profile is an important part of the quality control procedure when constructing antennas of this type. An efficient method for surface profile measurement has been proposed, i.e., the reflector surface is calculated from the measured near-field phase data using the theory of geometric optics. For a surface profile calculation of this kind, it is necessary to know the margin of error built into the method of calculation. This will enable a specification of the tolerance from which the surface profile can be determined. When calculating the surface profile from near-field phase data, there are two main sources of error. The first is the measurement error in near-field phase data. The second arises from the edge diffracted fields that are superimposed on the reflected fields in the measured near-field data. The error in the calculated surface profile produced by the edge diffracted fields is examined

    Advanced Communication Technology Satellite (ACTS) multibeam antenna technology verification experiments

    Get PDF
    The Advanced Communication Technology Satellite (ACTS) is a key to reaching NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams, and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna with rapidly reconfigurable hopping and fixed spot beam to serve users equipped with small-aperature terminals within the coverage areas. The proposed antenna technology experiments are designed to evaluate in-orbit ACTS multibeam antenna performance (radiation pattern, gain, cross pol levels, etc.)

    Ka-Band System and Propagation Effects on System Performance

    Get PDF
    The Advanced Communication Technology Satellite (ACTS) is an experimental communications satellite system launched in September 1993. ACTS introduces many new technologies, including operation in the Ka frequency band. ACTS uses multiple hopping narrow beams and very small aperture terminal (VSAT) technology to establish a system availability of 99.5% for a bit-error-rates of 5x10-7 or better over the continental United States. In order to maintain a minimum system availability f 99.5% over all US rain zones ACTS uses an adaptive rain fade compensation protocol to reduce the impact of signal attenuation resulting from propagation effects. The purpose of this paper is to present the results of system and sub-system characterization considering the statistical effects of system variances due to thermal and propagation effects over 6 years of ACTS operation including inclined orbit
    corecore