brought to you by 🕱 CORE

NASA Technical Memorandum 101458

Adaptive Feed Array Compensation System for Reflector Antenna Surface Distortion

(NASA-TM-101458) ADAPIIVE FEED ARRAY	N89-17756
COMPENSATION SYSTEM FOR REFLECTCE ANTENNA	
SURFACE DISTOFTICE (NASA) 7 F CSCL 20N	
	Unclas
G3/32	0188945

Roberto J. Acosta and A. Zaman Lewis Research Center Cleveland, Ohio

Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting San Jose, California, June 26–30, 1989

ADAPTIVE FEED ARRAY COMPENSATION SYSTEM FOR REFLECTOR ANTENNA SURFACE DISTORTION

Roberto J. Acosta and A. Zaman National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

INTRODUCTION

The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients.

GENERALIZED ADAPTIVE COMPENSATION SYSTEM

The feasibility of feed array compensation for reflector surface distortion has been extensively investigated [Refs. 1-6]. Basically there are two methods for obtaining the feed array complex excitation coefficients; namely the indirect conjugate field matching (ICFM) [Refs. 1-4] and the direct conjugate field matching (DCFM) [Refs. 5 and 6]. Graphical description of these two methods are presented in figures 1 and 2, respectively. These algorithms assume that the distorted reflector surface shape is known either in terms of a functional description or at discrete points. Some of the methods suggested to obtain the surface shape includes optical, photogrammetric, microwave holography, near-field measurement or other metrological techniques. For example, the near-field measurement technique [Ref.7] calculates the reflector surface shape from a measured near-field phase data. Figure 3 depicts a block diagram of a generalized adaptive compensation system, consisting of a detection and a compensation algorithm. The combination of these two algorithms provides a closed loop, on line control of the radiation performance of the antenna system in the presence solar radiation.

CONJUGATE FEED ARRAY

Detecting the shape of a distorted reflector may be a difficult task in the spacecraft environment. The concept of conjugate feed array (figure 4) can be employed to compensate for the degraded antenna performance without requiring surface point measurements. A block diagram representation of the concept is presented in figure 5. This compensating system can be described as follows; a pilot signal sent from the ground terminal is received by the spacecraft antenna and is detected by the conjugate feed array acquires the amplitude and phase information at each element location, and their conjugate field matching. If dipole sources are used as array elements the system can potentially compensate for pointing error and directivity loss. To control the sidelobe level (to a limited extend), the feed element pattern is designed to provide a correct taper of illumination on the reflector. To demonstrate this concept a simulated distorted reflector case is presented with several element patterns.

RESULTS

A simulated sinusoidal distortion (peak distortion of 0.25λ) was superimposed into an offset parabolic reflector configuration (figure 6). A hexagonal feed array of 37 elements (spacing = 1λ) was used in the simulation. Based on this configuration, numerical studies were conducted with different feed element patterns, and the results are shown in figures 7a-d. The array element pattern provided a limited control on the sidelobe level. In general the required undistorted sidelobe level is known and the corresponding feed element pattern can be selected accordingly. The most important feature of this compensating system is that it does not require the reflector surface shape to be known. The pilot signal from the ground need not be active all the time, since it is only needed at times when the distortions have changed appreciably. Above results indicate that the conjugate feed array concept will provide a closed loop adaptive control for the radiation performance of the antenna system. An experimental system prototype is being developed and will be used to verify the concept.

REFERENCES

- 1. Rudge, A.W.; and Davies, D.E.N.: Electronically Controllable Primary Feed for Profile-Error Compensation of Large Parabolic Reflector. IEE Proc., vol. 117, no. 2, Feb. 1970, pp. 351-358.
- Rahmat-Samii, Y.: A Generalized Reflector/Array Surface Compensation Algorithm for Gain and Sidelobe Control. 1987 IEEE International Symposium Digest Antennas and Propagation, vol. 2, IEEE, 1987, pp. 760-763.
- 3. Rahmat-Samii, Y.: Spacecraft Antenna Surface-Compensation Techniques. MSAT-X Quarterly (Jet Propulsion Laboratory), no. 9, Jan. 1987, pp. 2-6.
- 4. Cherrette, A.R.; et al.: Compensation of Reflector Antenna Surface Distortion Using an Array Feed. NASA TM-100286, 1988.
- 5. Acosta, R.J., et al.: Case Study of Active Array Feed Compensation with Sidelobe Control for Reflector Surface Distortion. NASA TM-100287, 1988.
- 6. Acosta, R.J.: Active Feed Array Compensation for Reflector Antenna Surface Distortions. NASA TM-100826, 1988.
- 7. Cherrette, A.R.; Lee, S.W.; and Acosta, R.J.: Detection of Reflector Surface Error From Near-Field Data: Effect of Edge Diffracted Field. NASA TM-89920, 1988.

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 1. - ILLUSTRATION OF INDIRECT CONJUGATE FIELD MATCHING (ICFM) TECHNIQUE.

FIGURE 2. - ILLUSTRATION OF DIRECT CONJUGATE FIELD MATCHING (DCFM) TECHNIQUE.

FIGURE 3. - BLOCK DIAGRAM OF A GENERALIZED ADAPTIVE COMPENSATION SYSTEM.

FIGURE 5. - ILLUSTRATION OF THE CONJUGATE ARRAY FEED COMPENSATION SYSTEM.

4

.

•

FIGURE 7. - COMPENSATED ANTENNA PATTERN.

Performance Report Documentation Page 1. Report No. NASA TM-101458 2. Government Accession No. 9. Recipient's Catalog No. 4. Trie and Subtilie Adaptive Feed Array Compensation System for Keflector Antenna Surface Distortion 9. Report Date 7. Author(s) Roberto J. Acosta and A. Zaman 8. Performing Organization Report No. E-4568 9. Performing Organization Report No. E-4568 9. Performing Organization Name and Address National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135-3191 11. Contract or Grant No. 11. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20364–0001 11. Sponsoring Agency Code 15. Supplementary Notes Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26-30, 1989. 14. Sponsoring Agency Code 16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelebe kevel, pointing, etc.) of large communication antenna systems degrade as the reflector surface distorm simily due to thermal effects from a varying solar flux. The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface distorm simily due to thermal effects from a varying solar flux. The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface distormi							
Image: Network Heport Document Accession No. 1. Report No. 2. Government Accession No. NASA TM-101458 2. Government Accession No. 4. The and Subitie 3. Recipient's Catalog No. Adaptive Feed Array Compensation System for Reflector Antenna 5. Report Date Surface Distortion 6. Performing Organization Report No. 7. Authors) 8. Performing Organization Report No. 8. Performing Organization Name and Address 6. Performing Organization Report No. 9. Parterning Organization Name and Address 11. Contract of Grant No. 12. Sponsoring Agency Name and Address 11. Contract of Grant No. National Acronautics and Space Administration 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address 14. Sponsoring Agency Code 13. Supplementary Notes 15. Supplementary Notes Prepred for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26–30, 1989. 14. Abstract The feesibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems described in this report can be used to maintain the design performance characteristics independent of thermal effects from a varying solar flux. The compensating system described in this report can be used to raintain the design performance characteristics independent of thermal effects from a var							
1. Report No. 2. Government Accession No. 3. Preprint's Catalog No. 4. The and Sublinia 5. Report Date Adaptive Feed Array Compensation System for Reflector Antenna Surface Distortion 6. Performing Organization Code 7. Author(s) 6. Performing Organization Report No. 8. Performing Organization Report No. 1. Performing Organization Report No. 9. Performing Organization Report No. 1. Contract or Grant No. 10. Wark Unit No. 6. Second Organization Report No. 11. Contract or Grant No. 11. Contract or Grant No. 12. Sponstring Agency Name and Address 11. Contract or Grant No. National Acconautics and Space Administration 11. Contract or Grant No. 12. Sponsoring Agency Name and Address 11. Contract or Grant No. National Acconautics and Space Administration 14. Sponsoring Agency Code 13. Supplementary Notes Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26–30, 1989. 14. Abstract The classibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of Ingre communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating systems described in thits report can be	National Aeronautics and Research Administration	eport Docume	entation Page				
NASA TM-101458 5. Report Date 4. Tite and Subilitie Adaptive Feed Array Compensation System for Reflector Antenna Surface Distortion 6. Performing Grganization Code 7. Author60 6. Performing Grganization Report No. Roberto J. Acosta and A. Zaman 10. Work Unit No. 9. Performing Organization Name and Address 11. Contract or Grant No. National Acronautics and Space Administration 12. Spensoring Agency Name and Address National Acronautics and Space Administration 13. Type of Report and Period Covered 12. Spensoring Agency Name and Address Technical Memorandum 13. Type of Report and Period Covered Technical Memorandum 14. Spensoring Agency Code 14. Spensoring Agency Code 15. Supplementary Notes Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26-30, 1989. 16. Abstract The compensating system Secribed in this report on the used to maintain the design performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating system Secribed in this report on the used to maintain the design performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface distortis mainely due to thermal effects from a varying solar	1. Report No.	2. Government Access	ion No.	3. Recipient's Catalog	No.		
4. Title and Subtitie Adaptive Feed Array Compensation System for Reflector Antenna 9. Partorning Organization Code 8. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. 8. Performing Organization Report No. E-4568 10. Work Unit No. 650-60-20 9. Performing Organization Name and Address 11. Contract or Grant No. National Acronautics and Space Administration 11. Contract or Grant No. 12. Sponsoring Agency Name and Address 11. Contract or Grant No. National Acronautics and Space Administration 14. Sponsoring Agency Code Washington, D.C. 2046-0001 13. Supplementary Notes 14. Sponsoring Agency Code Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26-30, 1989. 16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gian, sidelobe level, pointing, etc.) of large communication antenna systems described in this report an au exit to main at the design performance characteristics independent of thermal effects on the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating systems described in this report an au exit to activate in the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system em	NASA TM-101458						
Adaptive Feed Array Compensation System for Reflector Antenna Surface Distortion 7. Author(s) Roberto J. Acosta and A. Zaman 9. Performing Organization Name and Address National Aeronautics and Space Administration Leveland, Ohio 44135-3191 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Leveland, Ohio 44135-3191 13. Type of Report and Period Covered Technical Memorandum 14. Sponsoring Agency Name and Address National Aeronautics and Space Administration 15. Supplementary Notes Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26-30, 1989. 16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(b)) 18. Distribution Statement 17. Key Words (Suggested by Author(b)) 19. Distribution Statement 18. Abstract 19. Security Classt, (of this page) 1	4 Title and Subtitle			5. Report Date			
Surface Distortion 6. Performing Organization Code 7. Author(s) 6. Performing Organization Report No. Roberto J. Acosta and A. Zaman 6. Performing Organization Report No. E-4568 10. Work tom No. 6. Performing Organization Report No. E-4568 10. Work tom No. 6. SO-60-20 9. Performing Organization Name and Address 11. Contract or Grant No. 11. Supplementary Notes Technical Memorandum 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Technical Memorandum 14. Sponsoring Agency Code 13. Supplementary Notes Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26-30, 1989. 14. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface distortion a varying solar flux. The compensating system ster address on the reflector surface distortion avarying solar flux. 17. Key Words (Suggested by Author(s)) 14. Distribution Statement 17. Key Words (Suggested by Author(s)) 14. Distribution Statement 17. Key Words (Suggested by Author(s)) 14. Distribution Statement 17. Key	Adaptive Feed Array Compensation Sy	stem for Reflector A	ntenna				
	Surface Distortion						
7. Author(s) 8. Performing Organization Report No. Roberto J. Acosta and A. Zaman E-4568 10. Work Unit No. 650-60-20 9. Performing Organization Name and Address 11. Contract or Grant No. National Aeronautics and Space Administration 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration 13. Type of Repont and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code 15. Supplementary Notes Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26-30, 1989. 16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface (stops teach or thermal effects from a variface store formance characteristics (gain, sidelobe level, pointing, etc.) of large communication statement system degrade bed atray complex excitation coefficients. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 18. Distribution Statement Unclassified – Unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*			6. Performing Organization		ation Code		
7. Author(s) 8. Performing Organization Report No. 8. Performing Organization Name and Address 10. Work Unit No. 9. Performing Organization Name and Address 11. Contract or Grant No. 12. Sponsoring Agency Name and Address 11. Contract or Grant No. National Aeronautics and Space Administration 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address 14. Sponsoring Agency Code National Aeronautics and Space Administration 14. Sponsoring Agency Code 15. Supplementary Notes Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26-30, 1989. 16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems described in this report can be used to maintain the design performance characteristics (gain, sidelobe level, pointing, etc.) of large communicatoria antenna system degrade as the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 18. Propared field matching to adjust the feed array complex excitation coefficients. 21. No of pages <							
Roberto J. Acosta and A. Zaman E-4568 9. Performing Organization Name and Address 10. Work Unit No. National Aeronautics and Space Administration Lewis Research Center 11. Contract or Grant No. Cleveland, Ohio 44135-3191 13. Type of Report and Period Covered Technical Memorandum 14. Sponsoring Agency Code National Aeronautics and Space Administration Washington, D.C. 20546-0001 14. Sponsoring Agency Code 15. Supplementary Notes Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26-30, 1989. 16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(s)) Antenna surface distortion Antenna surface compensation Far-field analysis 18. Distribution Statement Unclassified – Unlimited Subject Category 32 18. Security Classif. (of this report 20. Security Classif. (of this page) 21. No of pages 22. Price*	7. Author(s)			8. Performing Organization Report No.			
9. Performing Organization Name and Address 10. Work Unit No. 9. National Aeronautics and Space Administration 650–60–20 11. Contract or Grant No. 11. Contract or Grant No. 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Technical Memorandum 14. Sponsoring Agency Code 13. Supplementary Notes Technical Memorandum Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26–30, 1989. 14. Sponsoring Agency Code 16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(st)) 18. Distribution Statement Antenna surface compensation 20. Security Classif. (of this page) 18. Bescuity Classif. (d this report) 20. Security Classif. (of this page) 20. Security Classif. (d this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*	Roberto J. Acosta and A. Zaman		E-4568 10. Work Unit No.				
9. Performing Organization Name and Address 650-60-20 11. Contract or Grant No. 11. Contract or Grant No. Lewis Research Center 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code 13. Type of Report and Period Covered Technical Memorandum 14. Sponsoring Agency Name and Address Technical Memorandum 15. Supplementary Notes Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26-30, 1989. 16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface. The proposed compensating system applies the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(9) It. Distribution Statement Antenna surface compensation 14. Distribution Statement Inclussified – Unlimited Subject Category 32 18. Security Classef. (of this report) 20. Security Classef. (of this page) 21. No of pages 22. Price*							
9. Performing Organization Name and Address National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135-3191 11. Contract or Grant No. 12. Sponsoring Agency Name and Address 11. Spin of Report and Period Covered Technical Memorandum 13. Supplementary Notes 14. Sponsoring Agency Code 15. Supplementary Notes Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26-30, 1989. 16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface disforts mainly due to thermal effects from a varging solar flux. The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(9) Antenna surface compensation Far-field analysis Research Center Unclassified — Unlimited Subject Category 32 Research Center Unclassified — Unlimited Subject Category 32			650-60-20				
National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135-3191 11. Contract or Grain No. 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546-0001 13. Type of Report and Period Covered Technical Memorandum 15. Supplementary Notes Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26-30, 1989. 14. Sponsoring Agency Code 16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface. The proposed compensating performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(s)) Antenna surface distortion Antenna surface compensation Far-field analysis 18. Distribution Statement Unclassified – Unlimited Subject Category 32 18. Security Classif, (of this report) 20. Security Classif, (of this page) 21. No of pages 22. Price*	9. Performing Organization Name and Address						
Lewis Research Center Cleveland, Ohio 44135-3191 13. Type of Report and Period Covered Technical Memorandum 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546-0001 14. Sponsoring Agency Code 15. Supplementary Notes Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26-30, 1989. 16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(s)) Antenna surface distortion Antenna surface compensation Far-field analysis 18. Distribution Statement Unclassified—Unlimited Subject Category 32 18. Security Classef, (of this page) 21. No of pages 22. Price*	National Aeronautics and Space Admin	istration		TT. Contract of Grant r	NO.		
Cleveland, Ohio 44135-3191 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code 15. Supplementary Notes Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26–30, 1989. 16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating system setscribed in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Antenna surface distortion Inclassified—Unlimited Subject Category 32 21. No of pages 22. Price* 18. Security Classef, (of this report) 20. Security Classef, (of this page) 21. No of pages 22. Price*	Lewis Research Center						
12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code 15. Supplementary Notes Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26–30, 1989. 16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Antenna surface distortion Unclassified – Unlimited Antenna surface compensation 19. Distribution Statement Unclassified – Unlimited Subject Category 32 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*	Cleveland, Ohio 44135-3191			13. Type of Report and	Period Covered		
11. Optioning Agenovities and Space Administration Washington, D.C. 20546-0001 14. Sponsoring Agency Code 11. Supplementary Notes Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26–30, 1989. 11. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(s)) Antenna surface distortion Antenna surface compensation Far-field analysis 18. Distribution Statement Unclassified – Unlimited Subject Category 32 18. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*	12 Shonsoring Agency Name and Address			Technical Memorandum			
11. Sponsoring Agency Code Washington, D.C. 20546-0001 15. Supplementary Notes Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26-30, 1989. 16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 18. Antenna surface compensation Far-field analysis 20. Security Classif. (of this page) 19. Security Classif. (of this page) 21. No of pages 22. Price* 102	National Agronautics and Space Administration						
15. Supplementary Notes Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26–30, 1989. 16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 18. Distribution Statement Unclassified – Unlimited 19. Security Classif. (of this page) 21. No of pages 22. Price* Life the space	Washington, D.C. 20546–0001			14. Sponsoring Agency Code			
15. Supplementary Notes Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26–30, 1989. 16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(s)) It. Distribution Statement 17. Key Words (Suggested by Author(s)) It. Distribution Statement 17. Key Words (Suggested by Author(s)) It. Distribution Statement 18. Distribution Statement Unclassified – Unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*							
Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting, San Jose, California, June 26–30, 1989. 16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 18. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price* 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*	15. Supplementary Notes						
16. Abstract 16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Matenna surface distortion Unclassified – Unlimited Subject Category 32 20. Security Classif. (of this page) 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*	Prepared for the 1989 IEEE AP-S Inte	rnational Symposium	and URSI Radio	Science Meeting, Sa	n Jose,		
16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Antenna surface distortion Unclassified – Unlimited Subject Category 32 20. Security Classif. (of this page) 21. No of pages 22. Price* 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*	California, June 26-30, 1989.	• •		-			
16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Antenna surface distortion Internation surface compensation Antenna surface compensation 18. Distribution Statement Far-field analysis 20. Security Classif. (of this page) 21. No of pages 22. Price* 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*							
16. Abstract The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Antenna surface distortion Unclassified – Unlimited Antenna surface compensation 20. Security Classif. (of this report) 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*							
The feasibility of a closed loop adaptive feed array system for compensating reflector surface deformations has been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Unclassified – Unlimited Subject Category 32 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*	16. Abstract						
been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 18. Distribution Statement Unclassified – Unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*	The feasibility of a closed loop adaptiv	e feed array system	for compensating r	eflector surface defe	ormations has		
antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employ the concept of conjugate field matching to adjust the feed array complex excitation coefficients. 17. Key Words (Suggested by Author(s)) Image: Automation of the system of	been investigated. The performance cha	been investigated. The performance characteristics (gain, sidelobe level, pointing, etc.) of large communication					
17. Key Words (Suggested by Author(s)) 18. Distribution Statement 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 17. Key Words (Suggested by Author(s)) 19. Security Classif. (of this report) 20. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*	antenna systems degrade as the reflector	or surface distorts ma	ainly due to therma	I effects from a var	ying solar flux.		
17. Key Words (Suggested by Author(s)) 18. Distribution Statement 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 17. Key Words (Suggested by Author(s)) 19. Security Classif. (of this report) 19. Security Classif. (of this report) 20. Security Classif. (of this page) 19. Security Classif. (of this report) 20. Security Classif. (of this page) 17. Key Words (Lastif. (of this report)) 20. Security Classif. (of this page) 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*	The compensating systems described in this report can be used to maintain the design performance characteristics independent of thermal effects on the reflector surface. The proposed compensating system employ the concent of						
17. Key Words (Suggested by Author(s)) 18. Distribution Statement 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 17. Key Words (Suggested by Author(s)) 18. Distribution Statement 18. Distribution Statement Unclassified – Unlimited 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*	conjugate field matching to adjust the feed array complex excitation coefficients.						
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Antenna surface distortion Unclassified – Unlimited Antenna surface compensation Subject Category 32 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*	conjugate metering to adjust and tood and y comprehended coordinates						
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Antenna surface distortion Unclassified – Unlimited Antenna surface compensation Subject Category 32 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*							
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Antenna surface distortion Unclassified – Unlimited Antenna surface compensation Subject Category 32 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*							
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Antenna surface distortion Unclassified – Unlimited Antenna surface compensation Subject Category 32 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*							
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Antenna surface distortion Unclassified – Unlimited Antenna surface compensation Subject Category 32 Far-field analysis 20. Security Classif. (of this page) 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*							
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Antenna surface distortion Unclassified Unlimited Antenna surface compensation Subject Category 32 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*							
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Antenna surface distortion Unclassified – Unlimited Antenna surface compensation Subject Category 32 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*							
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Antenna surface distortion Unclassified – Unlimited Antenna surface compensation Subject Category 32 Far-field analysis 20. Security Classif. (of this page) 21. No of pages 22. Price* Unclassified Unclassified 102							
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Antenna surface distortion Unclassified – Unlimited Antenna surface compensation Subject Category 32 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*							
17. Key Words (Suggested by Author(s)) 18. Distribution Statement Antenna surface distortion Unclassified – Unlimited Antenna surface compensation Subject Category 32 Far-field analysis 20. Security Classif. (of this page) 21. No of pages 22. Price* Unclassified Unclassified Content Content Content							
17. Key words (Suggested by Author(s)) 18. Distribution Statement Antenna surface distortion Unclassified – Unlimited Antenna surface compensation Subject Category 32 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*							
Antenna surface distortion Antenna surface compensation Far-field analysis 19. Security Classif. (of this report) Unclassif. (of this page) Unclassif.	17. Key Words (Suggested by Author(s))		18. Distribution Statement				
Far-field analysis Subject Category 52 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*	Antenna surface distortion		Unclassified – Unlimited Subject Category 32				
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*	Far-field analysis						
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*	i ai-iiciu anaiysis						
19. Security Gassifi, (of this report) 20. Security Gassifi, (of this page) 21. No of pages 22. Price	10. Converte Clangit (of this approxi	20 Soowith Cloself (-f	this page)	21 No of pages	22 Price*		
Unclassified Unclassified b AU2	Unclassified	Uncla	ssified	6	A02		

i

ļ.

^{*}For sale by the National Technical Information Service, Springfield, Virginia 22161