56 research outputs found
C-tactile afferent stimulating touch carries a positive affective value
The rewarding sensation of touch in affiliative interactions is hypothesized to be underpinned by a specialized system of nerve fibers called C-Tactile afferents (CTs), which respond optimally to slowly moving, gentle touch, typical of a caress. However, empirical evidence to support the theory that CTs encode socially relevant, rewarding tactile information in humans is currently limited. While in healthy participants, touch applied at CT optimal velocities (1-10cm/sec) is reliably rated as subjectively pleasant, neuronopathy patients lacking large myelinated afferents, but with intact C-fibres, report that the conscious sensation elicited by stimulation of CTs is rather vague. Given this weak perceptual impact the value of self-report measures for assessing the specific affective value of CT activating touch appears limited. Therefore, we combined subjective ratings of touch pleasantness with implicit measures of affective state (facial electromyography) and autonomic arousal (heart rate) to determine whether CT activation carries a positive affective value. We recorded the activity of two key emotion-relevant facial muscle sites (zygomaticus majorâsmile muscle, positive affect & corrugator superciliiâfrown muscle, negative affect) while participants evaluated the pleasantness of experimenter administered stroking touch, delivered using a soft brush, at two velocities (CT optimal 3cm/sec & CT non-optimal 30cm/sec), on two skin sites (CT innervated forearm & non-CT innervated palm). On both sites, 3cm/sec stroking touch was rated as more pleasant and produced greater heart rate deceleration than 30cm/sec stimulation. However, neither self-report ratings nor heart rate responses discriminated stimulation on the CT innervated arm from stroking of the non-CT innervated palm. In contrast, significantly greater activation of the zygomaticus major (smiling muscle) was seen specifically to CT optimal, 3cm/sec, stroking on the forearm in comparison to all other stimuli. These results offer the first empirical evidence in humans that tactile stimulation that optimally activates CTs carries a positive affective valence that can be measured implicitly
Narrative and Cognitive Modeling: Insights From Beckett Exploring Mind's Complexity
Complex systems exacerbate a common problem for scientific enquiry: the difficulty of creating models able to discriminate fundamental elements or patterns from random behaviours or corollary components in the event or process at issue. This chapter argues that a similar tension between order and randomness has been a chief modelling problem of Samuel Beckettâs narratives, tied to his interest in a specific kind of complex system (the mind) and its emergent properties (consciousness and the narrative sense of self). Bulding on narratology, complex system frameworks, cognitive theories of emergence and of scientific modelling, this chapter introduces the idea of âfictional cognitive modellingâ. Through this concept, the chapter analyses Beckettâs treatment of narrative devices as formal tools for the creation of âexploratory modelsâ able to atomise the emerging unity of conscious experience and of a narrative sense of self into its core components (defined as the ânarrative dynamic coreâ). It concludes by suggesting that Beckettâs narrative method shows how literature can occupy a proper position in the investigation and exploration of complex systems
Mirror Symmetric Bimanual Movement Priming Can Increase Corticomotor Excitability and Enhance Motor Learning
Repetitive mirror symmetric bilateral upper limb may be a suitable priming technique for upper limb rehabilitation after stroke. Here we demonstrate neurophysiological and behavioural after-effects in healthy participants after priming with 20 minutes of repetitive active-passive bimanual wrist flexion and extension in a mirror symmetric pattern with respect to the body midline (MIR) compared to an control priming condition with alternating flexion-extension (ALT). Transcranial magnetic stimulation (TMS) indicated that corticomotor excitability (CME) of the passive hemisphere remained elevated compared to baseline for at least 30 minutes after MIR but not ALT, evidenced by an increase in the size of motor evoked potentials in ECR and FCR. Short and long-latency intracortical inhibition (SICI, LICI), short afferent inhibition (SAI) and interhemispheric inhibition (IHI) were also examined using pairs of stimuli. LICI differed between patterns, with less LICI after MIR compared with ALT, and an effect of pattern on IHI, with reduced IHI in passive FCR 15 minutes after MIR compared with ALT and baseline. There was no effect of pattern on SAI or FCR H-reflex. Similarly, SICI remained unchanged after 20 minutes of MIR. We then had participants complete a timed manual dexterity motor learning task with the passive hand during, immediately after, and 24 hours after MIR or control priming. The rate of task completion was faster with MIR priming compared to control conditions. Finally, ECR and FCR MEPs were examined within a pre-movement facilitation paradigm of wrist extension before and after MIR. ECR, but not FCR, MEPs were consistently facilitated before and after MIR, demonstrating no degradation of selective muscle activation. In summary, mirror symmetric active-passive bimanual movement increases CME and can enhance motor learning without degradation of muscle selectivity. These findings rationalise the use of mirror symmetric bimanual movement as a priming modality in post-stroke upper limb rehabilitation
Gene Expression Profiling of Two Distinct Neuronal Populations in the Rodent Spinal Cord
BACKGROUND: In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular level. METHODOLOGY/PRINCIPAL FINDINGS: We examine the microarray gene expression profiles of two distinct neuronal populations in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50-250 fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32 genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the motor neurons than in the interneurons and of these only one had not previously been described in this population. CONCLUSIONS/SIGNIFICANCE: We provide an optimized experimental protocol that allows isolation of gene transcripts from fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor neurons and the interneurons that reflect the functional differences between these two cell populations in generating and transmitting the motor output in the rodent spinal cord
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Construction and validation of the Touch Experiences and Attitudes Questionnaire (TEAQ): a self-report measure to determine attitudes to and experiences of positive touch
Despite growing interest in the beneficial effects of positive touch experiences throughout our lives, and individual differences in how these experiences are perceived, a contemporary self-report measure of touch experiences and attitudes for which the factor structure has been validated, is as yet not available. This article describes four studies carried out during the construction and validation of the Touch Experiences and Attitudes Questionnaire (TEAQ). The original TEAQ, containing 117 items relating to positive touch experiences was systematically constructed. Principal component analysis reduced this measure to 57 items and identified six components relating to touch experiences during childhood (ChT) and adult experiences relating to current intimate touch (CIT) and touch with friends and family (FFT). Three attitudinal components were identified, relating to attitude to intimate touch (AIT), touch with unfamiliar people (AUT) and self-care (ASC). The structure of this questionnaire was confirmed through confirmatory factor analysis carried out on data obtained from a second sample. Good concurrent and predictive validity of the TEAQ compared to other physical touch measures currently available was identified. Known-group validity in terms of gender, marital status and age was determined, with expected group differences identified. This study demonstrates the TEAQ to have good face validity, internal consistency, construct validity in terms of discriminant validity, known-group validity and convergent validity, and criterion-related validity in terms of predictive validity and concurrent validity. We anticipate this questionnaire will be a valuable tool for the field of physical touch research
- âŠ