2,690 research outputs found

    Power systems research at MSFC

    Get PDF
    Power systems research reviews at Marshall Space Flight Cente

    Blood manufacturing methods affect red blood cell product characteristics and immunomodulatory activity

    Get PDF
    Transfusion of red cell concentrates (RCCs) is associated with increased risk of adverse outcomes that may be affected by different blood manufacturing methods and the presence of extracellular vesicles (EVs). We investigated the effect of different manufacturing methods on hemolysis, residual cells, cell-derived EVs, and immunomodulatory effects on monocyte activity. Thirty-two RCC units produced using whole blood filtration (WBF), red cell filtration (RCF), apheresis-derived (AD), and whole blood-derived (WBD) methods were examined (n = 8 per method). Residual platelet and white blood cells (WBCs) and the concentration, cell of origin, and characterization of EVs in RCC supernatants were assessed in fresh and stored supernatants. Immunomodulatory activity of RCC supernatants was assessed by quantifying monocyte cytokine production capacity in an in vitro transfusion model. RCF units yielded the lowest number of platelet and WBC-derived EVs, whereas the highest number of platelet EVs was in AD (day 5) and in WBD (day 42). The number of small EVs (<200 nm) was greater than large EVs (≥200 nm) in all tested supernatants, and the highest level of small EVs were in AD units. Immunomodulatory activity was mixed, with evidence of both inflammatory and immunosuppressive effects. Monocytes produced more inflammatory interleukin-8 after exposure to fresh WBF or expired WBD supernatants. Exposure to supernatants from AD and WBD RCC suppressed monocyte lipopolysaccharide-induced cytokine production. Manufacturing methods significantly affect RCC unit EV characteristics and are associated with an immunomodulatory effect of RCC supernatants, which may affect the quality and safety of RCCs

    Discovery of a [WO] central star in the planetary nebula Th 2-A

    Full text link
    % context About 2500 planetary nebulae are known in our Galaxy but only 224 have central stars with reported spectral types in the Strasbourg-ESO Catalogue of Galactic Planetary Nebulae (Acker et al. 1992; Acker et al. 1996) % aims We have started an observational program aiming to increase the number of PN central stars with spectral classification. % methods By means of spectroscopy and high resolution imaging, we identify the position and true nature of the central star. We carried out low resolution spectroscopic observations at CASLEO telescope, complemented with medium resolution spectroscopy performed at Gemini South and Magellan telescopes. % results As a first outcome of this survey, we present for the first time the spectra of the central star of the PN Th 2-A. These spectra show emission lines of ionized C and O, typical in Wolf-Rayet stars. % conclusions We identify the position of that central star, which is not the brightest one of the visual central pair. We classify it as of type [WO 3]pec, which is consistent with the high excitation and dynamical age of the nebula.Comment: 3 pages and 2 figures. Paper recommended for publication in A&

    K_L \ra \mu^\pm e^\mp \nu \overline{\nu} as background to K_L \ra \mu^\pm e^\mp

    Full text link
    We consider the process K_L \ra \mu^\pm e^\mp \nu \overline{\nu} at next to leading order in chiral perturbation theory. This process occurs in the standard model at second order in the weak interaction and constitutes a potential background in searches for new physics through the modes K_L \ra \mu^\pm e^\mp. We find that the same cut, Mμe>489M_{\mu e}>489~MeV, used to remove the sequential decays K_{l3}\ra \pi_{l2} pushes the B(K_L \ra \mu^\pm e^\mp \nu \overline{\nu}) to the 102310^{-23} level, effectively removing it as a background.Comment: 8 pages, LaTeX, 1 figure appended as postscript file after \end{document}. Fermilab-Pub-93/024-

    Effects for atmospheric neutrino experiments from electron neutrino oscillations

    Full text link
    The minimal interpretation of the atmospheric neutrino data suggests that the muon neutrino oscillates into another species with a mixing angle close to the maximal π/4\pi/4. In the Exact Parity Symmetric Model, both the muon and electron neutrinos are expected to be maximally mixed with essentially sterile partners (νμ\nu'_{\mu} and νe\nu'_e respectively). We examine the impact of maximal νeνe\nu_e - \nu'_e oscillations on the atmospheric neutrino experiments. We estimate that maximal νeνe\nu_e - \nu'_e oscillations will have effects on atmospheric neutrino data for δm2(νeνe)>7×105eV2|\delta m^2 (\nu_e - \nu_e')| > 7 \times 10^{-5} eV^2. For δm2\delta m^2 in this range, a slight but distinctive rise in the ratio of muon-like to electron-like events is predicted for the low-energy sample. Furthermore, the ratio of low-energy electron-like events with zenith angles less than 90deg90\deg to those with zenith angles greater than 90deg90\deg should be greater than 1.Comment: 11 pages, LaTeX, no figure

    The true nature of the alleged planetary nebula W16-185

    Full text link
    We report the discovery of a small cluster of massive stars embedded in a NIR nebula in the direction of the IRAS15411-5352 point source, which is related to the alleged planetary nebula W16-185. The majority of the stars present large NIR excess characteristic of young stellar objects and have bright counterparts in the Spitzer IRAC images; the most luminous star (IRS1) is the NIR counterpart of the IRAS source. We found very strong unresolved Brgamma emission at the IRS1 position and more diluted and extended emission across the continuum nebula. From the sizes and electron volume densities we concluded that they represent ultra-compact and compact HII regions, respectively. Comparing the Brgamma emission with the 7 mm free-free emission, we estimated that the visual extinction ranges between 14 and 20 mag. We found that only one star (IRS1) can provide the number of UV photons necessary to ionize the nebula.Comment: 30 pages, 15 figures, 2 tables V3: minor grammatical changes. Figure 4 is available in pdf file. Accepted for publication in AJ, April / 200

    Neutrino Lasing in the Sun

    Get PDF
    Applying the phenomenon of neutrino lasing in the solar interior, we show how the rate for the generic neutrino decay process `\nu -> fermion + boson', can in principal be enhanced by many orders of magnitude over its normal decay rate. Such a large enhancement could be of import to neutrino-decay models invoked in response to the apparent deficit of electron neutrinos observed from the sun. The significance of this result to such models depends on the specific form of the neutrino decay, and the particle model within which it is embedded.Comment: 12 pages, using ordinary TeX. No figure

    An Investigation of Equivalence Principle Violations Using Solar Neutrino Oscillations in a Constant Gravitational Potential

    Full text link
    Neutrino oscillations induced by a flavor-dependent violation of the Einstein Equivalence Principle (VEP) have been recently considered as a suitable explanation of the solar electron-neutrino deficiency. Unlike the MSW oscillation mechanism, the VEP mechanism is dependent on a coupling to the local background gravitational potential Φ\Phi. We investigate the differences which arise by considering three-flavor VEP neutrinos oscillating against fixed background potentials, and against the radially-dependent solar potential. This can help determine the sensitivity of the gravitationally-induced oscillations to both constancy and size (order of magnitude) of Φ\Phi. In particular, we consider the potential of the local superculster, Φ=3×105|\Phi|=3\times 10^{-5}, in light of recent work suggesting that the varying solar potential has no effect on the oscillations. The possibility for arbitrarily large background potentials in different cosmologies is discussed, and the effects of one such potential (Φ=103\Phi = 10^{-3}) are considered.Comment: 12pp, LaTeX; 12 figures (bitmapped postscript); Submitted to Phys Rev

    MSW mediated neutrino decay and the solar neutrino problem

    Get PDF
    We investigate the solar neutrino problem assuming simultaneous presence of MSW transitions in the sun and neutrino decay on the way from sun to earth. We do a global χ2\chi^2-analysis of the data on total rates in Cl, Ga and Superkamiokande (SK) experiments and the SK day-night spectrum data and determine the changes in the allowed region in the \dm - \tan^2\theta plane in presence of decay. We also discuss the implications for unstable neutrinos in the SNO experiment.Comment: Final version to appear in Phys. Rev.
    corecore