141 research outputs found

    Modelling and control of microalgae production in industrial photobioreactors

    Full text link
    [EN] This manuscript presents a general overview of the microalgae production process from a modelling and control perspective. First, the main advantages and the potential of these microorganisms are motivated, describing the dierent type of reactors used for their cultivation. Afterwards, the process dynamics, which is very complex and variable due to diary and annual changes on ambient conditions, is analyzed and the main balance equations to describe the system behaviour are introduced. Then, dierent biological and structural models validated in industrial plants will be presented. Subsequently, the existing control problems in these systems are described, introducing a wide set of control algorithms that have been experimentally evaluated in industrial reactors. Finally, the most relevant aspects discussed along the paper are summarized.[ES] Este artículo presenta una visión general sobre el proceso de producción de microalgas desde un punto de vista de modelado y control de procesos. En primer lugar se exponen las ventajas y el potencial de este tipo de microorganismos, así como los distintos tipos de reactores que se suelen utilizar para su producción. Posteriormente, se analiza el comportamiento dinámico de este tipo de procesos, el cual es muy complejo y cambiante debido a variaciones en las condiciones ambientales tanto diarias como anuales, y se presentan los distintos balances que permiten describir la evolución de las principales variables del sistema. Se exponen distintos tipos de modelos a nivel biológico y a nivel estructural que han sido validados a escala industrial. Tras analizar su comportamiento dinámico, se motivan los distintos problemas de control existentes en este tipo de sistemas y se resume una amplia batería de estrategias de control que han sido evaluadas con éxito en fotobiorreactores industriales. Finalmente, se concluye el trabajo con un balance de los aspectos más importantes expuestos a lo largo del mismo.Este trabajo ha sido realizado parcialmente gracias al apoyo del Ministerio de Economía y Competitividad con el proyecto DPI2017-84259-C2-1- R y el Programa de Investigación e Innovación Horizonte 2020 de la Unión Europea en el marco del proyecto SABANA (No. 727874).Guzmán, JL.; Acién, FG.; Berenguel, M. (2020). Modelado y control de la producción de microalgas en fotobiorreactores industriales. Revista Iberoamericana de Automática e Informática industrial. 18(1):1-18. https://doi.org/10.4995/riai.2020.13604OJS118181Acién, F. G., Camacho, F. G., Sánchez-Pérez, J. A., Fernández-Sevilla, J. M., Molina-Grima, E., 1997. A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnology and Bioengineering 55, 701-714. https://doi.org/10.1002/(SICI)1097-0290(19970905)55:53.0.CO;2-FAcién, F. G., Fernández-Sevilla, J. M., Molina-Grima, E., 2017. Microalgae: The basis of mankind sustainability. In: Case Study of Innovative Projects - Successful Real Cases. InTech, Ch. 7, pp. 123-140. https://doi.org/10.5772/67930Acién, F. G., García-Camacho, F., Sánchez-Pérez, J. A., Fernández-Sevilla, J. M., Molina-Grima, E., 1998. Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: Effects of dilution rate, tube diameter, and solar irradiance. Biotechnology and Bioengineering 58, 605-616. https://doi.org/10.1002/(SICI)1097-0290(19980620)58:63.0.CO;2-MAcién, F. G., Gómez-Serrano, C., Morales-Amaral, M. M., Fernández-Sevilla, J. M., Molina-Grima, E., 2016. Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Applied Microbiology and Biotechnology 100, 9013-9022. https://doi.org/10.1007/s00253-016-7835-7Barcelo-Villalobos, M., Acién, F. G., Guzmán, J. L., Fernández-Sevilla, J. M., Berenguel, M., 2019a. New strategies for the design and control of raceway reactors to optimize microalgae production. In: Handbook of Algal Technologies and Phytochemicals. Volume II: Phycoremediation, Biofuels and Global Biomass Production. CRC Press, Ch. 18, pp. 221-230. https://doi.org/10.1201/9780429057892-19Barcelo-Villalobos, M., Guzmán, J. L., Acién, F. G., 2019b. Nonlinear predictive control of a pH process. In: 2nd IWA Conference on Algal Technologies for Wastewater Treatment and Resource Recovery. Valladolid, Spain.Barcelo-Villalobos, M., Guzmán, J. L., Martín-Cara, I., Sánchez, J. A., Acién, F. G., 2018. Analysis of mass transfer capacity in raceway reactors. Algal Research 35, 91-97. https://doi.org/10.1016/j.algal.2018.08.017Benemann, J. R., 2003. Biofixation of CO2 and greenhouse gas abatement with microalgae. In: 6th Asia-Pacific Conference on Algal Biotechnology. Makati City, Philippines.Berenguel, M., Rodríguez, F., Acién, F. G., García, J. L., 2004. Model predictive control of pH in tubular photobioreactors. Journal of Process Control 14, 377-387. https://doi.org/10.1016/j.jprocont.2003.07.001Bernard, O., 2011. Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production. Journal of Process Control 21, 1378-1389. https://doi.org/10.1016/j.jprocont.2011.07.012Borowitzka, M. A., 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology 70 (1), 313 - 321, biotechnological Aspects of Marine Sponges. https://doi.org/10.1016/S0168-1656(99)00083-8Brindley, C., Jiménez-Ruíz, N., Acién, F. G., Fernández-Sevilla, J. M., 2016. Light regime optimization in photobioreactors using a dynamic photosynthesis model. Algal Research 16, 399-408. https://doi.org/10.1016/j.algal.2016.03.033Carreno-Zagarra, J. J., Guzmán, J. L., Moreno, J. C., Villamizar, R., 2019. Linear active disturbance rejection control for a raceway photobioreactor. Control Engineering Practice 85, 271-279. https://doi.org/10.1016/j.conengprac.2019.02.007Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., Chang, J. S., 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology 102, 71-81. https://doi.org/10.1016/j.biortech.2010.06.159Chen, J., Wang, Y., Benemann, J. R., Zhang, X., Hu, H., Qin, S., 2016. Microalgal industry in China: Challenges and prospects. Journal of Applied Phycology 28, 715-725. https://doi.org/10.1007/s10811-015-0720-4Chiaramonti, D., Prussi, M., Casini, D., Tredici, M. R., Rodolfi, L., Bassi, N., Zittelli, G. C., Bondioli, P., 2013. Review of energy balance in raceway ponds for microalgae cultivation: Re-thinking a traditional system is possible. Applied Energy 102, 101-111. https://doi.org/10.1016/j.apenergy.2012.07.040Concas, A., Pisu, M., Cao, G., 2010. Novel simulation model of the solar collector of BIOCOIL photobioreactors for CO2 sequestration with microalgae. Chemical Engineering Journal 157, 297-303. https://doi.org/10.1016/j.cej.2009.10.059Costache, T. A., Acién, F. G., Morales, M. M., Fernández-Sevilla, J. M., Stamatin, I., Molina-Grima, E., 2013. Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactors. Applied Microbiology and Biotechnology 97, 7627-7637. https://doi.org/10.1007/s00253-013-5035-2Cuaresma, M., Janssen, M., Valchez, C., Wijffels, R. H., 2011. Horizontal or vertical photobioreactors? how to improve microalgae photosynthetic efficiency. Bioresource Technology 102, 5129-5137. https://doi.org/10.1016/j.biortech.2011.01.078de Andrade, G. A., Berenguel, M., Guzmán, J. L., Pagano, D. J., Acién, F. G., 2016a. Optimization of biomass production in outdoor tubular photobioreactors. Journal of Process Control 37, 58-69. https://doi.org/10.1016/j.jprocont.2015.10.001de Andrade, G. A., Pagano, D. J., Guzmán, J. L., Berenguel, M., Fernández, I., Acién, F. G., 2016b. Distributed sliding mode control of pH in tubular ' photobioreactors. IEEE Transactions on Control Systems Technology 24, 1160-1173. https://doi.org/10.1109/TCST.2015.2480840de Godos, I., Mendoza, J. L., Acién, F. G., Molina, E., Banks, C. J., Heaven, S., Rogalla, F., 2014. Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresource Technology 153, 307-314. https://doi.org/10.1016/j.biortech.2013.11.087Djema, W., Bernard, O., Giraldi, L., 2020. Separating two species of microalgae in photobioreactors in minimal time. Journal of Process Control 87, 120-129. https://doi.org/10.1016/j.jprocont.2020.01.003Dochain, D., 2000. State observers for tubular reactors with unknown kinetics. Journal of Process Control 10, 259-268. https://doi.org/10.1016/S0959-1524(99)00020-7Dochain, D., 2008. Bioprocess Control. John Wiley & Sons, Ltd. Doran, P. M., 1997. Bioprocess Engineering Principles. Elsevier Science & Technology Booksl. https://doi.org/10.1002/9780470611128Fernández, I., Acién, F. G., Berenguel, M., Guzmán, J. L., 2014a. First principles model of a tubular photobioreactor for microalgal production. Industrial & Engineering Chemistry Research 53, 11121-11136. https://doi.org/10.1021/ie501438rFernández, I., Acién, F. G., Berenguel, M., Guzmán, J. L., de Andrade, G. A., Pagano, D. J., 2014b. A lumped parameter chemical-physical model for tubular photobioreactors. Chemical Engineering Science 112, 116-129. https://doi.org/10.1016/j.ces.2014.03.020Fernández, I., Acién, F. G., Fernández, J. M., Guzmán, J. L., Magán, J. J., Berenguel, M., 2012. Dynamic model of microalgal production in tubular photobioreactors. Bioresource Technology 126, 172-181. https://doi.org/10.1016/j.biortech.2012.08.087Fernández, I., Acién, F. G., Guzmán, J. L., Berenguel, M., Mendoza, J. L., 2016a. Dynamic model of an industrial raceway reactor for microalgae production. Algal Research 17, 67-78. https://doi.org/10.1016/j.algal.2016.04.021Fernández, I., Berenguel, M., Guzmán, J. L., Acién, F. G., de Andrade, G. A., Pagano, D. J., 2016b. Hierarchical control for microalgae biomass production in photobiorreactors. Control Engineering Practice 54, 246-255. https://doi.org/10.1016/j.conengprac.2016.06.007Fernández, I., Guzmán, J. L., Acién, F. G., Berenguel, M., 2017. Dynamic modeling of microalgal production in photobioreactors. In: Prospects and Challenges in Algal Biotechnology. Springer, Ch. 7, pp. 49-87. https://doi.org/10.1007/978-981-10-1950-0Fernández, I., Pena, J., Guzmán, J. L., Berenguel, M., Acién, F. G., 2010. Modelling and control issues of pH in tubular photobioreactors. IFAC Proceedings Volumes 43, 186-191. https://doi.org/10.3182/20100707-3-BE-2012.0046García-Manas, F., Guzmán, J. L., Berenguel, M., Acién, F. G., 2019. Biomass estimation of an industrial raceway photobioreactor using an extended Kalman filter and a dynamic model for microalgae production. Algal Research 37, 103-114. https://doi.org/10.1016/j.algal.2018.11.009Guterman, H., Vonshak, A., Ben-Yaakov, S., 1990. A macromodel for outdoor algal mass production. Biotechnology and Bioengineering 35, 809-819. https://doi.org/10.1002/bit.260350809Hoyo, A., Guzmán, J., Acién, F. G., Moreno, J. C., 2019a. A graphical tool to simulate raceway photoreactors. In: 2nd IWA Conference on Algal Technologies for Wastewater Treatment and Resource Recovery. Valladolid, Spain.Hoyo, A., Guzmán, J. L., Moreno, J. C., Berenguel, M., 2018. Control robusto con QFT del pH en un fotobiorreactor raceway. In: XXXVIII Jornadas de Automatica. Universidad de Oviedo, pp. 77-83.Hoyo, A., Guzmán, J. L., Moreno, J. C., Berenguel, M., 2019b. Control predictivo lineal del pH en un fotobiorreactor raceway. In: XL Jornadas de Automatica. Universidade da Coruña, Servizo de Publicacións, pp. 414-420. https://doi.org/10.17979/spudc.9788497497169.414Ifrim, G. A., Titica, M., Barbu, M., Boillereaux, L., Cogne, G., Caraman, S., Legrand, J., 2013. Multivariable feedback linearizing control of Chlamydomonas reinhardtii photoautotrophic growth process in a torus photobioreactor. Chemical Engineering Journal 218, 191-203. https://doi.org/10.1016/j.cej.2012.11.133James, S. C., Boriah, V., 2010. Modeling algae growth in an open-channel raceway. Journal of Computational Biology 17, 895-906. https://doi.org/10.1089/cmb.2009.0078Jupsin, H., Praet, E., Vasel, J. L., 2003. Dynamic mathematical model of high rate algal ponds (HRAP). Water Science and Technology 48, 197-204. https://doi.org/10.2166/wst.2003.0120Lazar, C., Pintea, R., Keyser, R. D., 2007. Nonlinear predictive control of a pH process. Computer Aided Chemical Engineering 24, 829-834. https://doi.org/10.1016/S1570-7946(07)80161-1Li, J., Xu, N. S., Su, W. W., 2003. Online estimation of stirred-tank microalgal photobioreactor cultures based on dissolved oxygen measurement. Biochemical Engineering Journal 14, 51-65. https://doi.org/10.1016/S1369-703X(02)00135-3Malek, A., Zullo, L. C., Daoutidis, P., 2016. Modeling and dynamic optimization of microalgae cultivation in outdoor open ponds. Industrial Engineering Chemical Research 55, 3327-3337. https://doi.org/10.1021/acs.iecr.5b03209Marrafioti, G., Tebbani, S., Beauvois, D., Becerra, G., Isambert, A., Hovd, M., 2009. Unscented Kalman Filter state and parameter estimation in a photobioreactor for microalgae production. IFAC Proceedings Volumes 42, 804- 809. https://doi.org/10.3182/20090712-4-TR-2008.00131McGinn, P. J., MacQuarrie, S. P., Choi, J., Tartakovsky, B., 2017. Maximizing the productivity of the microalgae Scenedesmus AMDD cultivated in a continuous photobioreactor using an online flow rate control. Bioprocess Biosystems Engineering 40, 63-71. https://doi.org/10.1007/s00449-016-1675-9Mehar, J., Shekh, A., Nethravathy, M. U., Sarada, R., Chauhan, V. S., Mudliar, S., 2019. Automation of pilot-scale open raceway pond: A case study of CO2-fed pH control on Spirulina biomass, protein and phycocyanin production. Journal of CO2 utilization 33, 384-393. https://doi.org/10.1016/j.jcou.2019.07.006Mendoza, J. L., Granados, M. R., de Godos, I., Acién, F. G., Molina, E., Banks, C., Heaven, S., 2013a. Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass and Bioenergy 54, 267-275. https://doi.org/10.1016/j.biombioe.2013.03.017Mendoza, J. L., Granados, M. R., de Godos, I., Acién, F. G., Molina, E., Heaven, S., Banks, C., 2013b. Oxygen transfer and evolution in microalgal culture in open raceways. Bioresource Technology 137, 188-195. https://doi.org/10.1016/j.biortech.2013.03.127Molina-Grima, E., Fernández-Sevilla, J. M., Sánchez-Pérez, J. A., García Camacho, F., 1996. A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances. Journal of Biotechnology 45, 59-69. https://doi.org/10.1016/0168-1656(95)00144-1Munoz-Tamayo, R., Martinon, P., Bougaran, G., Mairet, F., Bernard, O., 2014. Getting the most out of it: Optimal experiments for parameter estimation of microalgae growth models. Journal of Process Control 24, 991-1001. https://doi.org/10.1016/j.jprocont.2014.04.021Norsker, N. H., Barbosa, M. J., Vermue, M. H., Wijffels, R. H., 2011. Microalgal production - a close look at the economics. Biotechnology Advances 29, 24-27.https://doi.org/10.1016/j.biotechadv.2010.08.005Oblak, S., Skrjanc, I., 2010. Continuous-time Wiener-model predictive control of a pH process based on a PWL approximation. Chemical Engineering Science 65, 1720-1728. https://doi.org/10.1016/j.ces.2009.11.008Oswald, W. J., Golueke, C. G., 1968. Large-scale production of algae. In: Single-Cell Protein. The MIT Press, pp. 271-305.Patti, M. A., Feroldi, D., Zumoffen, D., 2019. Control predictivo aplicado a un proceso de producción continua de biodiesel. Revista Iberoamericana de Automática e Informática Industrial 16, 296-307. https://doi.org/10.4995/riai.2019.10696Pawlowski, A., Guzmán, J. L., Acién, F. G., Berenguel, M., Dormido, S., 2017. Event-based control systems for microalgae culture in industrial reactors. In: Prospects and Challenges in Algal Biotechnology. Springer, Ch. 7, pp. 1-48. https://doi.org/10.1007/978-981-10-1950-0Pawlowski, A., Guzmán, J. L., Berenguel, M., Acién, F. G., 2019. Control system for pH in raceway photobioreactors based on Wiener models. IFACPapersOnLine 52, 928-933, 12th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems DYCOPS 2019. https://doi.org/10.1016/j.ifacol.2019.06.181Pawlowski, A., Mendoza, J. L., Guzmán, J. L., Berenguel, M., Acién, F. G., Dormido, S., 2014. Effective utilization of flue gases in raceway reactor with event-based pH control for microalgae culture. Bioresource Technology 170, 1-9. https://doi.org/10.1016/j.biortech.2014.07.088Pawlowski, A., Mendoza, J. L., Guzmán, J. L., Berenguel, M., Acién, F. G., Dormido, S., 2015. Selective pH and dissolved oxygen control strategy for a raceway reactor within an event-based approach. Control Engineering Practice 44, 209-218. https://doi.org/10.1016/j.conengprac.2015.08.004Peng, L., Lan, C. Q., Zhang, Z., 2013. Evolution, detrimental effects, and removal of oxygen in microalga cultures: A review. Environmental Progress & Sustainable Energy 32, 982-988. https://doi.org/10.1002/ep.11841Pires, J. C. M., Alvim-Ferraz, M. C. M., Martins, F. G., 2017. Photobioreactor design for microalgae production through computational fluid dynamics: A review. Renewable and Sustainable Energy Reviews 79, 248-254. https://doi.org/10.1016/j.rser.2017.05.064Posten, C., 2009. Design principles of photo-bioreactors for cultivation of microalgae. Engineering in Life Sciences 9, 165-177. https://doi.org/10.1002/elsc.200900003Putt, R., Singh, M., Chinnasamy, S., Das, K. C., 2011. An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer. Bioresource Technology 102, 3240-3245. https://doi.org/10.1016/j.biortech.2010.11.029Richmond, A., 2004. Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia 512, 33-37. https://doi.org/10.1023/B:HYDR.0000020365.06145.36Rodríguez-Blanco, T., Sarabia, D., de Prada, C., 2018. Optimizacion en tiempo real utilizando la metodología de adaptacion de modificadores. Revista Iberoamericana de Automatica e Informatica Industrial 15, 133-144. https://doi.org/10.4995/riai.2017.8846Rodríguez-Miranda, E., Acién, F. G., Guzmán, J. L., Berenguel, M., Visioli, A., 2019. Modelo de temperatura para reactores abiertos de microalgas. In: XL Jornadas de Automatica. Universidade da Coruña, Servizo de Publicacións, pp. 582-588. https://doi.org/10.17979/spudc.9788497497169.582Rodríguez-Miranda, E., Beschi, M., Guzmán, J. L., Berenguel, M., Visioli, A., 2019. Daytime/nighttime event-based PI control for the pH of a microalgae raceway reactor. Processes 7, 1-16. https://doi.org/10.3390/pr7050247Rodríguez-Miranda, E., Guzmán, J. L., Aci en, F. G., Berenguel, M., Visioli, A., 2020. Temperature regulation for microalgae raceway reactors based on liquid level optimization. Algal ResearchEn revision.Romero-García, J. M., Guzmán, J. L., Moreno, J. C., Acién, F. G., Fernández-Sevilla, J. M., 2012. Filtered Smith Predictor to control pH during enzymatic hydrolysis of microalgae to produce L-aminoacids concentrates. Chemical Engineering Science 82, 121-131. https://doi.org/10.1016/j.ces.2012.07.024Senthil-Kumar, A., Ahmad, Z., 2012. Model predictive control (MPC) and its current issues in chemical engineering. Chemical Engineering Communications 199, 472-511. https://doi.org/10.1080/00986445.2011.592446Sompech, K., Chisti, Y., Srinophakun, T., 2014. Design of raceway ponds for producing microalgae. Biofuels 3, 387-397. https://doi.org/10.4155/bfs.12.39Stepan, D., Shockey, R., Dorn, T. M. R., 2002. Carbon Dioxide Sequestering using Microalgae Systems. US Department of Energy, Pittsburgh, PA, USA.Tang, D., Han, W., Li, P., Miao, X., Zhong, J., 2011. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology 102, 3071-3076. https://doi.org/10.1016/j.biortech.2010.10.047Tebbani, S., Lopes, F., Becerra-Celis, G., 2015. Nonlinear control of continuous cultures of Porphyridium purpureum in a photobioreactor. Chemical Engineering Science 123, 207-219. https://doi.org/10.1016/j.ces.2014.11.016Tebbani, S., Titica, M., Caraman, S., Boillereaux, L., 2013. Estimation of Chlamydomonas reinhardtii growth in a torus photobioreactor. IFAC Proceedings Volumes 46, 72-77, 12th IFAC Symposium on Computer Applications in Biotechnology. https://doi.org/10.3182/20131216-3-IN-2044.00053van Esbroeck, E., 2018. Temperature control of microalgae cultivation under variable conditions. MSc Thesis: Biobased Chemistry and Technology - Wageningen University.Wang, Z., Wen, X., Xu, Y., Ding, Y., Geng, Y., Li, Y., 2018. Maximizing CO2 biofixation and lipid productivity of oleaginous microalga Graesiella sp.WBG1 via CO2-regulated pH in indoor and outdoor open reactors. Science of the Total Environment 619-620, 827-833. https://doi.org/10.1016/j.scitotenv.2017.10.127Weissman, C. J., Goebel, R. P., Benemann, J. R., 1988. Photobioreactor design: Mixing, carbon utilization, and oxygen accumulation. Biotechnology and Bioengineering 31, 336-344. https://doi.org/10.1002/bit.260310409Xin, L., Hong-ying, H., Ke, G., Ying-xue, S., 2010. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology 101, 5494-5500. https://doi.org/10.1016/j.biortech.2010.02.01

    Hereditary renal adysplasia, pulmonary hypoplasia and Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary renal adysplasia is an autosomal dominant trait with incomplete penetrance and variable expression that is usually associated with malformative combinations (including Müllerian anomalies) affecting different mesodermal organs such as the heart, lung, and urogenital system.</p> <p>Case report</p> <p>A case showing pulmonary hypoplasia, hip dysplasia, hereditary renal adysplasia, and Mayer-Rokitansky-Kuster-Hauser syndrome in adulthood is reported here. The i.v. pyelography showed right renal agenesis with a normal left kidney and ureter. Ultrasound and Magnetic Resonance Imaging also showed right renal agenesis with multicystic embryonary remnants in the right hemipelvis probably corresponding to a dysgenetic kidney. An uretrocystoscopy showed absence of ectopic ureter and of the right hemitrigone. She was scheduled for a diagnostic laparoscopy and creation of a neovagina according to the McIndoe technique with a prosthesis and skin graft. Laparoscopy confirmed the absence of the uterus. On both sides, an elongated, solid, rudimentary uterine horn could be observed. Both ovaries were also elongated, located high in both abdominal flanks and somewhat dysgenetics. A conventional cytogenetic study revealed a normal female karyotype 46, XX at a level of 550 GTG bands. A CGH analysis was performed using a 244K oligoarray CGH detecting 11 copy number variants described as normal variants in the databases. The 17q12 and 22q11.21 microdeletions described in other MRKH patients were not present in this case. Four years after operation her evolution is normal, without symptoms and the neovagina is adequately functional. The geneticists have studied her family history and the pedigree of the family is shown.</p> <p>Conclusions</p> <p>We suggest that primary damage to the mesoderm (paraaxil, intermediate, and lateral) caused by mutations in a yet unidentified gene is responsible for: 1) skeletal dysplasia, 2) inappropriate interactions between the bronchial mesoderm and endodermal lung bud as well as between the blastema metanephric and ureteric bud, and eventually 3) Müllerian anomalies (peritoneal mesothelium) at the same level. These anomalies would be transmitted as an autosomal dominant trait with incomplete penetrance and variable expressivity.</p

    Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment?

    Get PDF
    Microalgae have been proposed as an option for wastewater treatment since the 1960’s but still this technology has not been expanded to an industrial scale. In this paper, the major factors limiting the performance of these systems are analysed. The composition of the wastewater is highly relevant, and especially the presence of pollutants such as heavy metals and emerging compounds. Biological and engineering aspects are also critical and have to be improved to at least approximate the performance of conventional systems, not just in terms of capacity and efficiency but also in terms of robustness. Finally, the harvesting of the biomass and its processing into valuable products poses a challenge; yet at the same time, an opportunity exists to increase economic profitability. Land requirement is a major bottleneck that can be ameliorated by improving the system’s photosynthetic efficiency. Land requirement has a significant impact on the economic balance but the profits from the biomass produced can enhance these systems’ reliability, especially in small cities

    Valorization of Microalgae and Energy Resources

    Get PDF
    Microalgae biotechnology has grown very rapidly in the last few decades due to the multiple applications that these microorganisms have from pharmaceuticals and cosmetics to foods/feeds and biofuels. One of the main challenges in expanding this industry is to enlarge the single use of the biomass produced in addition to reducing the high biomass production cost of the current technologies. To overcome this bottleneck, the development of microalgae-based biorefineries has been proposed. The issue is to obtain as many bioproducts as possible from the cultivated biomass, including biofuels. Consequently, biodiesel production (from the lipid fraction), bioethanol (from carbohydrate fraction), and biogas or bio-oil (from the whole biomass) have been posited. In this book chapter, we review the current state of the art in the production of sustainable biofuels from microalgae and analyze the potential of microalgae to contribute to the biofuel sector

    Utilization of secondary-treated wastewater for the production of freshwater microalgae

    Get PDF
    In this work we studied the potential use of secondary-treated wastewater as nutrient source in the production of freshwater microalgae strains. Experiments were performed indoors in semicontinuous mode, at 0.3 day-1, simulating outdoor conditions. We demonstrated that all the tested strains can be produced by using only secondary-treated wastewater as the nutrient source. The utilization of secondary-treated wastewater imposes nutrient-limiting conditions, with maximal biomass productivity dropping to 0.5 g·l-1·day-1and modifies the biochemical composition of the biomass by increasing the amount of lipids and carbohydrates while reducing the biomass protein content. We measured fatty acids content and productivity of up to 25%d.wt. and 110 mg·l-1·day-1, respectively. We demonstrated that all the tested strains were capable of completely removing the nitrogen and phosphorus contained in the secondary-treated wastewater, and while the use of this effluent reduced the cells’ photosynthetic efficiency, the nitrogen and phosphorus coefficient yield increased. Muriellopsis sp. and S. subpicatus were selected as the most promising strains for outdoor production using secondary-treated wastewater as the culture medium; this was not only because of their high productivity but also their photosynthetic efficiency, of up to 2.5%, along with nutrient coefficient yields of up to 96 gbiomass·gN-1 and 166 gbiomass·gP-1. Coupling microalgae production processes to tertiary treatment in wastewater treatment plants makes it possible to recover nutrients contained in the water and to produce valuable biomass, especially where nutrient removal is required prior to wastewater discharge

    Utilization of centrate for the outdoor production of marine microalgae at pilot-scale in flat-panel photobioreactors

    Get PDF
    The outdoor production of marine microalgae biomass in pilot scale flat panels photobioreactors, under not sterile conditions and using centrate as nutrients source, was studied. Experiments were performed modifying the centrate percentage, dilution rate and orientation of the photobioreactors. The strain Geitlerinema sp. was that one prevailing independently of the culture conditions. The higher productivity of 47.7 gbiomass·m-2·day-1 dry weight and photosynthetic efficiency of 2.8%, was achieved when using 20% centrate and a dilution rate of 0.3 day-1, whatever the orientation of the reactor, maximal nutrient removal capacities of 82%, 85% and 100% for carbon, nitrogen and phosphorus being obtained. Under non-optimal conditions up to 80% of the nitrogen and 60% of the phosphorus were lost by stripping and precipitation, respectively. Carbohydrates was the major component of the biomass followed by proteins and lipids. These results support the possibility to produce microalgae biomass below 0.59 €/kg, useful to produce biofertilizers and animal feed

    Exploring different pretreatment methodologies for allowing microalgae growth in undiluted piggery wastewater

    Get PDF
    The overapplication of manure on agricultural soils leads to nitrogen and phosphorus discharge into the aquatic environment, resulting in serious eutrophication problems and decreased water quality. Piggery wastewater (PWW) can be treated by microalgae to recycle nutrients, but the toxic levels of ammonia and organic matter hinder their growth. Fresh water is usually used to dilute PWW, but it is a scarce resource. The implementation of a pretreatment step before microalgae-based treatment could make PWW suitable for microalgae growth. Electrocoagulation, ammonia stripping, photo-Fenton, and constructed wetlands were evaluated as pretreatment methods to reduce ammonia, chemical oxygen demand (COD), color, and total suspended solids. Moreover, the pretreated PWWs were tested to grow the microalga Tetradesmus obliquus. Photo-Fenton showed the best results among the other pretreatments, achieving removal efficiencies above 90%, except for ammonia. This resulted in T. obliquus being capable of growing on undiluted PWW, even at higher ammonia levels, achieving similar biomass productivity to synthetic medium (66.4 ± 17.8 mg·L−1·day−1 and 60.1 ± 10.4 mg·L−1·day−1, respectively) almost doubling with pH control (116.5 mg·L−1·day−1). Thus, this pretreatment seems to be the most promising one to incorporate into microalgae-based treatment systems and must be further explored.info:eu-repo/semantics/publishedVersio

    Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production

    Get PDF
    This paper focuses on the selection of native microalgae strains suitable for wastewater treatment and biofuel production. Four Chlorophyceae strains were isolated from North-eastern Tunisia. Their performances were compared in continuous mode at a 0.3 1/day dilution rate. The biomass productivity and nutrient removal capacity of each microalgae strain were studied. The most efficient strain was identified as Scenedesmus sp. and experiments at different dilution rates from 0.2 to 0.8 1/day were carried out. Maximal biomass productivity of 0.92 g/L·day was obtained at 0.6 1/day. The removal of chemical oxygen demand (COD), ammonium and phosphorus was in the range of 92-94%, 61-99% and 93-99%, respectively. Carbohydrates were the major biomass fraction followed by lipids and then proteins. The saponifiable fatty acid content was in the 4.9-13.2% dry biomass range, with more than 50% of total fatty acids being composed of saturated and monosaturated fatty acids
    • …
    corecore