82 research outputs found

    3D CFD Analysis of the Influence of Some Geometrical Engine Parameters on Small PFI Engine Performances – the Effects on the Tumble Motion and the Mean Turbulent Intensity Distribution

    Get PDF
    In scooter/motorbike engines coherent and stable tumble motion generation is still considered an effective mean in order to both reduce engine emissions and promote higher levels of combustion efficiency. The promotion of a stable and coherent tumble structure is largely believed in literature to enhance in-cylinder turbulence accelerating combustion process. In small PFI engine layout and weight constraints limit the adoption of more advanced concepts. In previous technical papers the authors demonstrated the influence of head shape and squish area on tumble vortex formation, development, breakdown and on final value of turbulence close to spark plug for small PFI engines. The main result of the this research was that the combustion chamber having the less squish area resulted to have the highest level of turbulence close to spark plug at ignition time. The geometry under analysis in the current paper is a 3-valves pent-roof motorcycle engine. 3D CFD simulations were ran at 6500 rpm with AVL FIRE code. The chosen engine geometry was the geometry found to be the best set-up in terms of turbulence and combustion performances in the previous paper. In the present paper the head shape and the squish area were kept constant and the following engine parameters were varied: the intake duct angle (the angle of the intake duct entering the head was reduced of 6%. i.e. it was more directed toward the exhaust side of the chamber), the piston shape, and finally the compression ratio (it was reduced of 9%). The main goal of the current analysis is to understand which of these parameters is predominant in accelerating combustion for directing engine design toward the best set-up. © 2013 The Authors

    Anaemia and Iron studies among women of reproductive age group: A Cross-sectional survey of a Large Cantonment in Western Maharashtra

    Get PDF
    Background: Anaemia remains a major cause of concern among the women of reproductive age in our country. However, there is a wide variation amongst different socio-economic strata. Aim & Objectives: This study was conducted among women of reproductive age for prevalence of anaemia and its association with certain socio-clinical variables in cantonment. Methods: It was a cross-sectional study. The information regarding socio-demographic variables, anthropometric measurements and clinical parameters were taken. Hemogram and iron profile was done by collecting venous blood from the participants. Results: Data was analyzed for 722 participants. Out of these 140, mild, moderate and severe anaemia was seen in 57, 77, 06 respectively. The major factors associated with anaemia were heavy menstruation and higher parity. Amongst these 140, iron deficiency anaemia was diagnosed in 135 .Among the 28 pregnant women, eight were anaemic (28.6: 95% CI 19.1-63.9).Conclusion: The results of our study showed lower prevalence of anaemia than national level and majority of these were iron deficiency anaemia, which is amenable to prevention and treatment

    Applanation optical coherence elastography: noncontact measurement of intraocular pressure, corneal biomechanical properties, and corneal geometry with a single instrument

    Get PDF
    Current clinical tools provide critical information about ocular health such as intraocular pressure (IOP). However, they lack the ability to quantify tissue material properties, which are potent markers for ocular tissue health and integrity. We describe a single instrument to measure the eye-globe IOP, quantify corneal biomechanical properties, and measure corneal geometry with a technique termed applanation optical coherence elastography (Appl-OCE). An ultrafast OCT system enabled visualization of corneal dynamics during noncontact applanation tonometry and direct measurement of micro air-pulse induced elastic wave propagation. Our preliminary results show that the proposed Appl-OCE system can be used to quantify IOP, corneal biomechanical properties, and corneal geometry, which builds a solid foundation for a unique device that can provide a more complete picture of ocular health

    Ultra-high speed OCT allows measurement of intraocular pressure, corneal geometry, and corneal stiffness using a single instrument

    Get PDF
    Screening for ocular diseases, such as glaucoma and keratoconus, includes measuring the eye-globe intraocular pressure (IOP) and corneal biomechanical properties. However, currently available clinical tools cannot quantify corneal tissue material parameters, which can provide critical information for detecting diseases and evaluating therapeutic outcomes. Here, we demonstrate measurement of eye-globe IOP, corneal elasticity, and corneal geometry of in situ porcine corneas with a technique termed applanation optical coherence elastography (Appl-OCE) with single instrument. We utilize an ultrafast phase-sensitive optical coherence tomography system comprised of a 4X buffered Fourier domain mode-locked swept source laser with an Ascan rate of ~1.5 MHz and a 7.3 kHz resonant scanner. The IOP was measured by imaging the response of in situ porcine corneas to a large force air-puff. As with other noncontact tonometers, the time when the cornea was applanated during the inwards and outwards motion was correlated to a measure air-pressure temporal profile. The IOP was also measured with a commercially available rebound tonometer for comparison. The stiffness of the corneas was assessed by directly imaging and analyzing the propagation of a focused micro air-pulse induced elastic wave, and the corneal geometry was obtained from the OCT structural image. Our results show that corneal thickness decreased as IOP increased, and that corneal stiffness increased with IOP. Moreover, the IOP measurements made by Appl-OCE were more closely correlated with the artificially set IOP than the rebound tonometer, demonstrating the capabilities of Appl-OCE to measure corneal stiffness, eye-globe IOP, and corneal geometry with a single instrument

    Ultra-fast line-field low coherence holographic elastography using spatial phase shifting

    Get PDF
    Optical coherence elastography (OCE) is an emerging technique for quantifying tissue biomechanical properties. Generally, OCE relies on point-by-point scanning. However, long acquisition times make point-by-point scanning unfeasible for clinical use. Here we demonstrate a noncontact single shot line-field low coherence holography system utilizing an automatic Hilbert transform analysis based on a spatial phase shifting technique. Spatio-temporal maps of elastic wave propagation were acquired with only one air-pulse excitation and used to quantify wave velocity and sample mechanical properties at a line rate of 200 kHz. Results obtained on phantoms were correlated with data from mechanical testing. Finally, the stiffness of porcine cornea at different intraocular pressures was also quantified in situ

    Noncontact phase-sensitive dynamic optical coherence elastography at megahertz rate

    Get PDF
    Dynamic optical coherence elastography (OCE) techniques have shown great promise at quantitatively obtaining the biomechanical properties of tissue. However, the majority of these techniques have required multiple temporal OCT acquisitions (M-B mode) and corresponding excitations, which lead to clinically unfeasible acquisition times and potential tissue damage. Furthermore, the large data sets and extended laser exposures hinder their translation to the clinic, where patient discomfort and safety are critical criteria. In this work we demonstrate noncontact true kilohertz frame-rate dynamic optical coherence elastography by directly imaging a focused air-pulse induced elastic wave with a home-built phase-sensitive OCE system based on a 4X buffered Fourier Domain Mode Locked swept source laser with an A-scan rate of ~1.5 MHz. The elastic wave was imaged at a frame rate of ~7.3 kHz using only a single excitation. In contrast to previous techniques, successive B-scans were acquired over the measurement region (B-M mode) in this work. The feasibility of this method was validated by quantifying the elasticity of tissue-mimicking agar phantoms as well as porcine corneas ex vivo at different intraocular pressures. The results demonstrate that this method can acquire a depth-resolved elastogram in milliseconds. The reduced data set enabled a rapid elasticity assessment, and the ultra-fast acquisition speed allowed for a clinically safe laser exposure to the cornea. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Noncontact elastic wave imaging optical coherence elastography for evaluating changes in corneal elasticity due to crosslinking

    Get PDF
    The mechanical properties of tissues can provide valuable information about tissue integrity and health and can assist in detecting and monitoring the progression of diseases such as keratoconus. Optical coherence elastography (OCE) is a rapidly emerging technique, which can assess localized mechanical contrast in tissues with micrometer spatial resolution. In this work we present a noncontact method of optical coherence elastography to evaluate the changes in the mechanical properties of the cornea after UV-induced collagen cross-linking. A focused air-pulse induced a low amplitude (μm scale) elastic wave, which then propagated radially and was imaged in three dimensions by a phase-stabilized swept source optical coherence tomography (PhSSSOCT) system. The elastic wave velocity was translated to Young’s modulus in agar phantoms of various concentrations. Additionally, the speed of the elastic wave significantly changed in porcine cornea before and after UV-induced corneal collagen cross-linking (CXL). Moreover, different layers of the cornea, such as the anterior stroma, posterior stroma, and inner region, could be discerned from the phase velocities of the elastic wave. Therefore, because of noncontact excitation and imaging, this method may be useful for in vivo detection of ocular diseases such as keratoconus and evaluation of therapeutic interventions such as CXL

    Evaluation of posterior porcine sclera elasticity in situ as a function of IOP

    Get PDF
    The biomechanical properties of the sclera could provide key information regarding the progression and etiology of ocular diseases. For example, an elevated intraocular pressure is one of the most common risk factors for glaucoma and can cause pathological deformations in the tissues of the posterior eye, such as the sclera, potentially damaging these vital tissues. Previous work has evaluated scleral biomechanical response to global displacements with techniques such as inflation testing. However, these methods cannot provide localized biomechanical assessments. In this pilot work, we induce low amplitude (< 10 μm) elastic waves using acoustic radiation force in posterior scleral tissue of fresh porcine eyes (n=2) in situ. The wave propagation induced using an ultrasound transducer was detected across an 8 mm region using a phase-sensitive optical coherence elastography system (PhS-OCE). The elastographic measurements were taken at various artificially controlled intraocular pressures (IOP). The IOP was pre-cycled before being set to 10 mmHg for the first measurement. Subsequent measurements were taken at 20 mmHg and 30 mmHg for each sample. The results show an increase in the stiffness of the sclera as a function of IOP. Furthermore, we observed a variation in the elasticity based on direction, suggesting that the sclera has anisotropic biomechanical properties. Our results show that OCE is an effective method for evaluating the mechanical properties of the sclera, and reveals a new area for our future work

    Assessing the effects of riboflavin/UV-A crosslinking on porcine corneal mechanical anisotropy with optical coherence elastography

    Get PDF
    In this work we utilize optical coherence elastography (OCE) to assess the effects of UV-A/riboflavin corneal collagen crosslinking (CXL) on the mechanical anisotropy of in situ porcine corneas at various intraocular pressures (IOP). There was a distinct meridian of increased Young’s modulus in all samples, and the mechanical anisotropy increased as a function of IOP and also after CXL. The presented noncontact OCE technique was able to quantify the Young’s modulus and elastic anisotropy of the cornea and their changes as a function of IOP and CXL, opening new avenues of research for evaluating the effects of CXL on corneal biomechanical properties
    corecore