
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Evaluation of posterior porcine sclera
elasticity <i>in situ</i> as a function
of IOP

Achuth  Nair, Chen  Wu, Manmohan   Singh, Chih Hao
Liu, Raksha  Raghunathan, et al.

Achuth  Nair, Chen  Wu, Manmohan   Singh, Chih Hao  Liu, Raksha
Raghunathan, Jennifer  Nguyen, Megan  Goh, Salavat  Aglyamov, Kirill V.
Larin, "Evaluation of posterior porcine sclera elasticity <i>in situ</i> as a
function of IOP," Proc. SPIE 10474, Ophthalmic Technologies XXVIII,
1047418 (19 February 2018); doi: 10.1117/12.2289233

Event: SPIE BiOS, 2018, San Francisco, California, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 6/1/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Tomsk State University Repository

https://core.ac.uk/display/287432307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

Evaluation of Posterior Porcine Sclera Elasticity in situ as a function of IOP 
Achuth Naira, Chen Wua, Manmohan Singha, Chih Hao Liua, Raksha Raghunathana, Jennifer 

Nguyena, Megan Goha, Salavat Aglyamovb, and Kirill V. Larina,c,d,* 

aDepartment of Biomedical Engineering, University of Houston, Houston, TX, USA; bDepartment of Mechanical 
Engineering, University of Houston, Houston, TX, USA; cInterdisciplinary Laboratory of Biophotonics, Tomsk State 
University, Tomsk, Russia; dMolecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA 

*klarin@uh.edu; Phone: 1 832 842-8834; Fax: 1 713 743-0226  

ABSTRACT 

The biomechanical properties of the sclera could provide key information regarding the progression and etiology of 
ocular diseases. For example, an elevated intraocular pressure is one of the most common risk factors for glaucoma and 
can cause pathological deformations in the tissues of the posterior eye, such as the sclera, potentially damaging these 
vital tissues. Previous work has evaluated scleral biomechanical response to global displacements with techniques such 
as inflation testing. However, these methods cannot provide localized biomechanical assessments. In this pilot work, we 
induce low amplitude (< 10 µm) elastic waves using acoustic radiation force in posterior scleral tissue of fresh porcine 
eyes (n=2) in situ. The wave propagation induced using an ultrasound transducer was detected across an 8 mm region 
using a phase-sensitive optical coherence elastography system (PhS-OCE). The elastographic measurements were taken 
at various artificially controlled intraocular pressures (IOP). The IOP was pre-cycled before being set to 10 mmHg for 
the first measurement. Subsequent measurements were taken at 20 mmHg and 30 mmHg for each sample. The results 
show an increase in the stiffness of the sclera as a function of IOP. Furthermore, we observed a variation in the elasticity 
based on direction, suggesting that the sclera has anisotropic biomechanical properties. Our results show that OCE is an 
effective method for evaluating the mechanical properties of the sclera, and reveals a new area for our future work. 
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1. INTRODUCTION  
The sclera is a critical load-bearing component of the eye-globe that extends from the cornea to the optic nerve and 
protects ocular components from mechanical deformation from external or internal forces, e.g. intraocular pressure 
(IOP)[1]. Several ocular pathologies, such as glaucoma and myopia, have been associated with alterations in the 
biomechanical properties of the sclera [2-5]. For example, it has been well established that myopia is produced by axial 
extension of the eye globe caused by changes in the scleral elasticity [4]. Severe cases such as high myopia are 
characterized by scleral thinning and localized ectasia of the posterior sclera [4]. Additionally, elevation in intraocular 
pressure (IOP) is one of the most common risk factors for glaucoma [6] and can cause pathological deformations in vital 
tissues in the posterior eye, damaging these tissues and reducing vision quality [6]. Thus, evaluating scleral 
biomechanical properties could potentially provide key information in understanding and assessing ocular disease 
etiology and progression.  

Previous studies evaluating scleral biomechanical properties have largely focused on mechanical testing [7-9], inflation 
studies [10-12], atomic force microscopy (AFM) [13], computational modeling [14-16], and scattering-based imaging [5, 
17]. These methods do provide important information about the biomechanical properties of the sclera, but each has its 
limitations. Mechanical testing generally involves mechanical evaluation of excised scleral strips. Elasticity measured 
with this method does not consider the whole eye-globe configuration or natural physiological effects like IOP on the 
sclera. AFM, on the other hand, cannot comfortably be used in vivo, especially for tissue that are difficult to access, such 
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as the sclera. Computational modeling can provide important information about the mechanical properties of the sclera. 
However, modeling is limited in accuracy by the measurements used for validation. Scattering-based methods like x-ray 
scattering and small-angle light scattering are effective for evaluating the collagen fibril orientation, but do not provide 
information regarding the macroscale effect of fibril orientation on tissue mechanical properties. Inflation testing usually 
maintains the whole eye-globe configuration and utilizes the IOP to induce deformations that are detected using imaging 
methods such as electronic speckle pattern interferometry [11, 18]. However, the strain measurements obtained using 
these methods often cannot be translated into quantitative biomechanical properties. Moreover, the large scale 
deformations that are induced limit the measurement resolution and often induce non-linear effects, which are difficult to 
assess. Considering the limitations of these established methods, a technique that could quantitatively evaluate 
biomechanical properties of the sclera in vivo would be a powerful tool for understanding the role of the biomechanical 
properties of tissues in the posterior eye on various ocular pathologies. 

Elastography is a technique that was developed in the 1990s to assess the mechanical properties of tissues by detecting 
mechanical displacements with an imaging modality such as magnetic resonance imaging or ultrasound [19, 20]. While 
magnetic resonance elastography and ultrasound elastography have previously been used to evaluate scleral 
biomechanical properties [21, 22], the large displacement amplitudes needed for detection and the limited spatial 
resolution of the parent imaging modality of these techniques limits their effectiveness for small, relatively thin tissues 
like the sclera.  

Optical coherence elastography (OCE) is an emerging technique that utilizes the high spatial resolution of optical 
coherence tomography (OCT) to obtain micrometer scale resolution [23] and sub-nanometer scale displacement 
sensitivity with phase-sensitive techniques [24]. The high resolution and highly sensitive nature of OCE makes it an 
effective tool to evaluate the elasticity of a sample with localized displacements. OCE has been previously used to 
evaluate the mechanical properties of ocular tissues such as the cornea and the lens [25-27]. In this work, we use acoustic 
radiation force to induce elastic waves in the sclera of in situ porcine eye-globes [27]. OCE measurements were taken at 
three random positions to examine the elasticity of the posterior sclera at various artificially controlled IOPs [28, 29]. 
Our results demonstrate the potential of OCE to quantitatively determine the elasticity of sclera.  

2. MATERIALS AND METHODS 
Fresh porcine eyes in the whole eye-globe configuration (n=2) were positioned in a custom eye holder to facilitate IOP 
control and limit sample motion. The eye-globe was immersed in 0.9% saline to prevent tonicity from affecting the 
structural integrity of the sample. The eye-globe was cannulated in the holder to control IOP using a home-built closed-
loop controller [30]. The eye-globe was pre-conditioned by cycling the IOP from 5 to 30 mmHg. OCE measurements 
were then taken at 10, 20, and 30 mmHg.  

The US-OCE system utilized in this work consists of an ultrasound transducer with a 3.5 MHz central frequency coupled 
with a phase-sensitive spectral domain OCT system. Further details on the system can be found in our previous works 
[27]. Briefly, our SD-OCT system consists of a superluminescent diode light source with an 840 nm wavelength and a 
~49 nm bandwidth. Axial and lateral resolution of the OCT system was measured as 6 µm and 8 µm in tissue, 
respectively. The system had a measured displacement sensitivity of ~2 nm, and was set at an A-line acquisition speed of 
25 kHz. A 3.5 MHz sinusoidal wave generated by a function generator was amplified using a 50 dB power amplifier and 
drove the ultrasound transducer, which induced low amplitude (<10 µm) displacements in the tissue. A system schematic 
is shown in Figure 1. 
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Figure 3a and 3b shows the average sample group velocity, and the Young’s modulus as estimated by the surface wave 
equation, for three different IOPs. As the IOP increased, the IOP-wise average Young’s modulus increased from 1.7±0.6 
MPa at 10 mmHg, to 2.6±1.0 MPa at 20 mmHg, and finally to 3.3±0.4 MPa at 30 mmHg. Figure 3c shows the averaged 
directional assessment of group velocity.   

 
Figure 3: a) The mean IOP-wise average group velocity for each sample. The error bars are the sample-wise standard deviation. b) 
The mean IOP-wise average Young’s Modulus for each sample, estimated from the group velocity by the surface wave equation. 
The error bars are the sample-wise standard deviation. c) The directional assessment of group velocity, where “left” and “right 
correspond to the direction from the excitation position. The error bars are the depth-wise standard deviation. 

4. DISCUSSION AND CONCLUSION 
Our results indicate a clear increase in the stiffness of the sclera as a function of IOP. The biomechanical properties of 
the sclera measured in this work corroborate with the works on sclera elasticity measurements available in the literature, 
thus indicating the potential of OCE to assess elasticity of the sclera [37]. Our results also indicated a potential variation 
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in the directional assessment of elasticity, which may suggest that the sclera exhibits anisotropic biomechanical 
properties. Anisotropic behavior would be consistent with the regional changes in scleral ultrastructure (variable 
thickness and collagen fibril orientation) and subsequent biomechanical properties [17, 38].  

The megapascal scale stiffness of the sclera can be a limiting factor for obtaining a detailed analysis of scleral elasticity 
due to the relatively high speed of the elastic wave. As such, future work will be focused on optimizing this technique to 
obtain a regional assessment of the biomechanical properties of the sclera as well as more detailed measurement of 
scleral mechanical anisotropy. Currently, the evaluation of the posterior sclera is unfeasible for in vivo application using 
the presented technique. However, advanced loading technique or even passive elastography [39] may overcome these 
limitations, enabling noninvasive in vivo assessment of scleral biomechanical properties. 
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