10 research outputs found

    ∗ Corresponding Author. Address:

    No full text
    Submitted to J. Climate Observations show the oceans have warmed over the past 40 years, with appreciable regional variation and more warming at the surface than at depth. Comparing the observations with results from two coupled ocean-atmosphere climate models (PCM and HadCM3) that include anthropogenic forcing shows remarkable agreement between the observed and model-estimated warming. In this comparison the models were sampled at the same locations as gridded yearly observed data. In the top 100 m of the water column the warming is well separated from natural variability, including both variability arising from internal instabilities of the coupled ocean-atmosphere climate system and that arising from volcanism and solar fluctuations. Between 125 and 200 m the agreement is not significant, but then increases again below, and remains significant down to 600 m. Analysis of PCM’s heat budget indicates the warming is driven by an increase in net surface heat flux that reaches 0.7 watts m −2 by the 1990s; the downward longwave flux increases by 3.7 watts m −2, which is not fully compensated by an increase in the upwar

    An overview of results from the Coupled Model Intercomparison Project

    No full text
    The Coupled Model Intercomparison Project (CMIP) collects output from global coupled ocean-atmosphere general circulation models (coupled GCMs). Among other uses, such models are employed both to detect anthropogenic effects in the climate record of the past century and to project future climatic changes due to human production of greenhouse gases and aerosols. CMIP has archived output from both constant forcing ("control run") and perturbed (1% per year increasing atmospheric carbon dioxide) simulations. This report summarizes results form 18 CMIP models. A third of the models refrain from employing ad hoc flux adjustments at the ocean-atmosphere interface. The new generation of non-flux-adjusted control runs are nearly as stable as - and agree with observations nearly as well as - the flux-adjusted models. Both flux-adjusted and non-flux-adjusted models simulate an overall level of natural internal climate variability that is within the bounds set by observations. These developments represent significant progress in the state of the art of climate modeling since the Second (1995) Scientific Assessment Report of the Intergovernmental Panel on Climate Change (IPCC; see Gates et al. [Gates, W.L., et at., 1996. Climate models - Evaluation. Climate Climate 1995: The Science of Climate Change, Houghton, J.T., et al. (Eds.), Cambridge Univ. Press, pp. 229-284]). In the increasing-CO2 runs, differences between different models, while substantial, are not as great as one might expect from earlier assessments that relied on equilibrium climate sensitivity

    The role of the intra-daily SST variability in the Indian monsoon variability and monsoon-ENSO–IOD relationships in a global coupled model

    No full text
    The impact of diurnal SST coupling and vertical oceanic resolution on the simulation of the Indian Summer Monsoon (ISM) and its relationships with El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events are studied through the analysis of four integrations of a high resolution Coupled General Circulation Model (CGCM), but with different configurations. The only differences between the four integrations are the frequency of coupling between the ocean and atmosphere for the Sea Surface Temperature (SST) parameter (2 vs. 24 h coupling) and/or the vertical oceanic resolution (31 vs. 301 levels) in the CGCM. Although the summer mean tropical climate is reasonably well captured with all the configurations of the CGCM and is not significantly modified by changing the frequency of SST coupling from once to twelve per day, the ISM–ENSO teleconnections are rather poorly simulated in the two simulations in which SST is exchanged only once per day, independently of the vertical oceanic resolution used in the CGCM. Surprisingly, when 2 h SST coupling is implemented in the CGCM, the ISM–ENSO teleconnection is better simulated, particularly, the complex lead-lag relationships between the two phenomena, in which a weak ISM occurs during the developing phase of an El Niño event in the Pacific, are closely resembling the observed ones. Evidence is presented to show that these improvements are related to changes in the characteristics of the model’s El Niño which has a more realistic evolution in its developing and decaying phases, a stronger amplitude and a shift to lower frequencies when a 2-hourly SST coupling strategy is implemented without any significant changes in the basic state of the CGCM. As a consequence of these improvements in ENSO variability, the lead relationships between Indo-Pacific SSTs and ISM rainfall resemble the observed patterns more closely, the ISM–ENSO teleconnection is strengthened during boreal summer and ISM rainfall power spectrum is in better agreement with observations. On the other hand, the ISM–IOD teleconnection is sensitive to both SST coupling frequency and the vertical oceanic resolution, but increasing the vertical oceanic resolution is degrading the ISM–IOD teleconnection in the CGCM. These results highlight the need of a proper assessment of both temporal scale interactions and coupling strategies in order to improve current CGCMs. These results, which must be confirmed with other CGCMs, have also important implications for dynamical seasonal prediction systems or climate change projections of the monsoon

    Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary

    No full text
    The Working Group I (WGI) contribution to the Intergovernmental Panel on Climate Change Sixth Assessment Report (AR6) assess the physical science basis of climate change. As part of that contribution, this Technical Summary (TS) is designed to bridge between the comprehensive assessment of the WGI Chapters and its Summary for Policymakers (SPM). It is primarily built from the Executive Summaries of the individual chapters and atlas and provides a synthesis of key findings based on multiple lines of evidence (e.g., analyses of observations, models, paleoclimate information and understanding of physical, chemical and biological processes and components of the climate system). All the findings and figures here are supported by and traceable to the underlying chapters, with relevant chapter sections indicated in curly brackets
    corecore