11 research outputs found

    Visible and Near-IR Reflectance Spectra of Smectite Acquired Under Dry Conditions for Interpretation of Martian Surface Mineralogy

    Get PDF
    Visible and near-IR (VNIR) spectra from the MEx OMEGA and the MRO CRISM hyper-spectral imaging instruments have spectral features associated with the H2O molecule and M OH functional groups (M = Mg, Fe, Al, and Si). Mineralogical assignments of martian spectral features are made on the basis of laboratory VNIR spectra, which were often acquired under ambient (humid) conditions. Smectites like nontronite, saponite, and montmorillionite have interlayer H2O that is exchangeable with their environment, and we have acquired smectite reflectance spectra under dry environmental conditions for interpretation of martian surface mineralogy. We also obtained chemical, Moessbauer (MB), powder X-ray diffraction (XRD), and thermogravimetric (TG) data to understand variations in spectral properties. VNIR spectra were recorded in humid lab air at 25-35C, in a dynamic dry N2 atmosphere (50-150 ppmv H2O) after exposing the smectite samples (5 nontronites, 3 montmorillionites, and 1 saponite) to that atmosphere for up to approximately l000 hr each at 25-35C, approximately 105C, and approximately 215C, and after re-exposure to humid lab air. Heating at 105C and 215C for approximately 1000 hr is taken as a surrogate for geologic time scales at lower temperatures. Upon exposure to dry N2, the position and intensity of spectral features associated with M-OH were relatively insensitive to the dry environment, and the spectral features associated with H2O (e.g., approximately 1.90 micrometers) decreased in intensity and are sometimes not detectable by the end of the 215C heating step. The position and intensity of H2O spectral features recovered upon re-exposure to lab air. XRD data show interlayer collapse for the nontronites and Namontmorillionites, with the interlayer remaining collapsed for the latter after re-exposure to lab air. The interlayer did not collapse for the saponite and Ca-montmorillionite. TG data show that the concentration of H2O derived from structural OH was invariant to the dry N2 treatment for saponite and the montmorillionites, but the nontronites had additional structural OH after treatment. Upon exposure to dry N2, the VNIR spectra also acquired a red slope with decreasing albedo between approximately 0.4 and approximately 2.0 micrometers. The magnitude of the effects covaries with exposure time to dry N2 and heating temperature. Upon re-exposure to lab air, the slope and albedo do not completely recover to pre-exposure values. MB data show that these effects do not result from partial reduction of ferric to ferrous iron, and TG data show they do not result from loss of structural OH. Possible explanations include formation of small clusters of (superparamagnetic) ferric oxide and reduced smectite crystallinity. The difference in spectral properties between spectra acquired in humid lab air and under dry conditions are consequential for interpretation of CRISM and OMEGA spectra. For example, nontronite by itself and not nontronite plus ferrihydrite can account for the red spectral slope in martian spectra where nontronite is indicated by the Fe-OH spectral features

    Aqueous Processes and Microbial Habitability of Gale Crater Sediments from the Blunts Point to the Glenn Torridon Clay Unit

    Get PDF
    A driving factor for sending the Mars Science Laboratory, Curiosity rover to Gale Crater was the orbital detection of clay minerals in the Glen Torridon (GT) clay unit. Clay mineral detections in GT suggested a past aqueous environment that was habitable, and could contain organic evidence of past microbiology. The mission of the Sample Analysis at Mars (SAM) instrument onboard Curiosity was to detect organic evidence of past microbiology and to detect volatile bearing mineralogy that can inform on whether past geochemical conditions would have supported microbiological activity. The objective of this work was to 1) evaluate the depositional/alteration conditions of Blunts Point (BP) to GT sediments 2) search for evidence of organics, and 3) evaluate microbial habitability in the BP, Vera Rubin Ridge (VRR), and GT sedimentary rock

    Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater

    Get PDF
    Tridymite, a SiO2 mineral that crystallizes at low pressures and high temperatures (>870 °C) from high-SiO2 materials, was detected at high concentrations in a sedimentary mudstone in Gale crater, Mars. Mineralogy and abundance were determined by X-ray diffraction using the Chemistry and Mineralogy instrument on the Mars Science Laboratory rover Curiosity. Terrestrial tridymite is commonly associated with silicic volcanism where high temperatures and high-silica magmas prevail, so this occurrence is the first in situ mineralogical evidence for martian silicic volcanism. Multistep processes, including high-temperature alteration of silica-rich residues of acid sulfate leaching, are alternate formation pathways for martian tridymite but are less likely. The unexpected discovery of tridymite is further evidence of the complexity of igneous petrogenesis on Mars, with igneous evolution to high-SiO2 compositions

    Silicic volcanism on Mars evidenced by tridymite in high-SiO_2 sedimentary rock at Gale crater

    Get PDF
    Tridymite, a low-pressure, high-temperature (>870 °C) SiO_2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity. The tridymitic mudstone has ∼40 wt.% crystalline and ∼60 wt.% X-ray amorphous material and a bulk composition with ∼74 wt.% SiO_2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (∼17 wt.% of bulk sample), tridymite (∼14 wt.%), sanidine (∼3 wt.%), cation-deficient magnetite (∼3 wt.%), cristobalite (∼2 wt.%), and anhydrite (∼1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (∼39 wt.% opal-A and/or high-SiO_2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides−perchlorates−chlorates), and has minor TiO_2 and Fe_2O_3T oxides (∼5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a “Lake Gale” catchment environment can account for Buckskin’s tridymite, cristobalite, feldspar, and any residual high-SiO_2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO_2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill

    Gypsum, bassanite, and anhydrite at Gale crater, Mars

    No full text
    Analyses by the CheMin X-ray diffraction instrument on Mars Science Laboratory show that gypsum, bassanite, and anhydrite are common minerals at Gale crater. Warm conditions (∼6 to 30 °C) within CheMin drive gypsum dehydration to bassanite; measured surface temperatures and modeled temperature depth profiles indicate that near-equatorial warm-season surface heating can also cause gypsum dehydration to bassanite. By accounting for instrumental dehydration effects we are able to quantify the in situ abundances of Ca-sulfate phases in sedimentary rocks and in eolian sands at Gale crater. All three Ca-sulfate minerals occur together in some sedimentary rocks and their abundances and associations vary stratigraphically. Several Ca-sulfate diagenetic events are indicated. Salinity-driven anhydrite precipitation at temperatures below ∼50 °C may be supported by co-occurrence of more soluble salts. An alternative pathway to anhydrite via dehydration might be possible, but if so would likely be limited to warmer near-equatorial dark eolian sands that presently contain only anhydrite. The polyphase Ca-sulfate associations at Gale crater reflect limited opportunities for equilibration, and they presage mixed salt associations anticipated in higher strata that are more sulfate-rich and may mark local or global environmental change. Mineral transformations within CheMin also provide a better understanding of changes that might occur in samples returned from Mars

    A Review of the Phyllosilicates in Gale Crater as Detected by the CheMin Instrument on the Mars Science Laboratory, Curiosity Rover

    No full text
    Curiosity, the Mars Science Laboratory (MSL) rover, landed on Mars in August 2012 to investigate the ~3.5-billion-year-old (Ga) fluvio-lacustrine sedimentary deposits of Aeolis Mons (informally known as Mount Sharp) and the surrounding plains (Aeolis Palus) in Gale crater. After nearly nine years, Curiosity has traversed over 25 km, and the Chemistry and Mineralogy (CheMin) X-ray diffraction instrument on-board Curiosity has analyzed 30 drilled rock and three scooped soil samples to date. The principal strategic goal of the mission is to assess the habitability of Mars in its ancient past. Phyllosilicates are common in ancient Martian terrains dating to ~3.5–4 Ga and were detected from orbit in some of the lower strata of Mount Sharp. Phyllosilicates on Earth are important for harboring and preserving organics. On Mars, phyllosilicates are significant for exploration as they are hypothesized to be a marker for potential habitable environments. CheMin data demonstrate that ancient fluvio-lacustrine rocks in Gale crater contain up to ~35 wt. % phyllosilicates. Phyllosilicates are key indicators of past fluid–rock interactions, and variation in the structure and composition of phyllosilicates in Gale crater suggest changes in past aqueous environments that may have been habitable to microbial life with a variety of possible energy sources
    corecore