22 research outputs found

    Allergy for a Lifetime?

    Get PDF
    ABSTRACTAs the key molecule of type-I-hypersensitivity, IgE provides specificity for the allergen and links it to the allergic effector functions. Antibodies are secreted by plasma cells and their precursors, the plasma blasts. The fate of plasma cells is a subject of controversy, with respect to their lifetime and persistence in the absence of allergen. In general, plasma cells were for a long time considered as short-lived end products of B-cell differentiation, and many of them are short-lived, although already for more than 20 years evidence has been provided that IgE-secreting plasma cells can persist over months. Today long-lived, "memory" plasma cells are considered to represent a distinct cellular entity of immunological memory, with considerable therapeutic relevance. Long-lived plasma cells resist current therapeutic and experimental approaches such as immunosuppression, e.g. cyclophosphamide, steroids, X-ray irradiation, anti-CD20 antibodies and anti-inflammatory drugs, while the chronic generation of short-lived plasma cells is sensitive to conventional immunosuppression. The seasonal variation in pollen-specific IgE can be suppressed by immunotherapy, indicating that component of the IgE response, which is stimulated with pollen allergen is susceptible to suppression. Targeting of the remaining long-lived, allergen-specific plasma cells, providing the stable IgE-titers, represents a therapeutic challenge.Here we discuss recent evidence suggesting, why current protocols for the treatment of IgE-mediated allergies fail: Memory plasma cells generated by inhalation of the allergen become long-lived and are maintained preferentially in the bone marrow. They do not proliferate, and are refractory to conventional therapies. Current concepts target plasma cells for depletion, e.g. the proteasome inhibitor bortezomib, BAFF and APRIL antagonists and autologous hematopoietic stem cell transplantation

    Porin from the halophilic species Ectothiorhodospira vacuolata: cloning, structure of the gene and comparison with other porins

    Get PDF
    The gene coding for the anion-specific porin of the halophilic eubacterium Ectothiorhodospira (Ect.) vacuolata was cloned and sequenced, the first such gene so analyzed from a purple sulfur bacterium. It encodes a precursor protein consisting of 374 amino acid (aa)-residues including a signal peptide of 22-aa residues. Comparison with aa sequences of porins from several other members of the Proteobacteria revealed little homology. Only two regions showed local homology with the previously sequenced porins of Neisseria species, Comamonas acidovorans, Bordetella pertussis, Alcaligenes eutrophus, and Burkholderia cepacia. Genomic Southern blot hybridization studies were carried out with a probe derived from the 5′ end of the gene coding for the porin of Ect. vacuolata. Two related species, Ect. haloalkaliphila and Ect. shaposhnikovii, exhibited a clear signal, while the extremely halophilic bacterium Halorhodospira (Hlr.) halophila (formerly Ect. halophila) did not show any cross-hybridization even at low stringency. This result is in good accordance with a recently proposed reassignment within the family Ectothiorhodospiraceae, which included the separation of the extremely halophilic species into the new genus Halorhodospira

    Cutting edge: IgE plays an active role in tumor immunosurveillance in mice

    Get PDF
    Exogenous IgE acts as an adjuvant in tumor vaccination in mice, and therefore a direct role of endogenous IgE in tumor immunosurveillance was investigated. By using genetically engineered mice, we found that IgE ablation rendered mice more susceptible to the growth of transplantable tumors. Conversely, a strengthened IgE response provided mice with partial or complete resistance to tumor growth, depending on the tumor type. By genetic crosses, we showed that IgE-mediated tumor protection was mostly lost in mice lacking FceRI. Tumor protection was also lost after depletion of CD8+ T cells, highlighting a cross-Talk between IgE and T cell- mediated tumor immunosurveillance. Our findings provide the rationale for clinical observations that relate atopy with a lower risk for developing cancer and open new avenues for the design of immunotherapeutics relevant for clinical oncology. The Journal of Immunology, 2016, 197: 2583-2588

    HPK1 Associates with SKAP-HOM to Negatively Regulate Rap1-Mediated B-Lymphocyte Adhesion

    Get PDF
    BACKGROUND: Hematopoietic progenitor kinase 1 (HPK1) is a Ste20-related serine/threonine kinase activated by a range of environmental stimuli including genotoxic stress, growth factors, inflammatory cytokines and antigen receptor triggering. Being inducibly recruited to membrane-proximal signalling scaffolds to regulate NFAT, AP-1 and NFkappaB-mediated gene transcription in T-cells, the function of HPK1 in B-cells to date remains rather ill-defined. METHODOLOGY/PRINCIPAL FINDINGS: By using two loss of function models, we show that HPK1 displays a novel function in regulating B-cell integrin activity. Wehi 231 lymphoma cells lacking HPK1 after shRNA mediated knockdown exhibit increased basic activation levels of Ras-related protein 1 (Rap1), accompanied by a severe lymphocyte function-associated antigen-1 (LFA-1) dependent homotypic aggregation and increased adhesion to intercellular adhesion molecule 1 (ICAM-1). The observed phenotype of enhanced integrin activity is caused downstream of Src, by a signalling module independent of PI3K and PLC, involving HPK1, SKAP55 homologue (SKAP-HOM) and Rap1-GTP-interacting adaptor molecule (RIAM). This alters actin dynamics and renders focal adhesion kinase (FAK) constitutively phosphorylated. Bone marrow and splenic B-cell development of HPK1(-/-) mice are largely unaffected, except age-related tendencies for increased splenic cellularity and BCR downregulation. In addition, naïve splenic knockout B-cells appear hyperresponsive to a range of stimuli applied ex vivo as recently demonstrated by others for T-cells. CONCLUSIONS/SIGNIFICANCE: We therefore conclude that HPK1 exhibits a dual function in B-cells by negatively regulating integrin activity and controlling cellular activation, which makes it an interesting candidate to study in pathological settings like autoimmunity and cancer

    AllergoOncology:High innate IgE levels are decisive for the survival of cancer-bearing mice

    Get PDF
    Background Atopics have a lower risk for malignancies, and IgE targeted to tumors is superior to IgG in fighting cancer. Whether IgE-mediated innate or adaptive immune surveillance can confer protection against tumors remains unclear. Objective We aimed to investigate the effects of active and passive immunotherapy to the tumor-associated antigen HER-2 in three murine models differing in Epsilon-B-cell-receptor expression affecting the levels of expressed IgE. Methods We compared the levels of several serum specific anti-HER-2 antibodies (IgE, IgG1, IgG2a, IgG2b, IgA) and the survival rates in low-IgE M1M2 mice lacking the transmembrane/cytoplasmic domain of Epsilon-B-cell-receptors expressing reduced IgE levels, high-IgE KN1 mice expressing chimeric Epsilon-Gamma1-B-cell receptors with 4-6-fold elevated serum IgE levels, and wild type (WT) BALB/c. Prior engrafting mice with D2F2/E2 mammary tumors overexpressing HER-2, mice were vaccinated with HER-2 or vehicle control PBS using the Th2-adjuvant Al(OH) (active immunotherapy), or treated with the murine anti-HER-2 IgG1 antibody 4D5 (passive immunotherapy). Results Overall, among the three strains of mice, HER-2 vaccination induced significantly higher levels of HER-2 specific IgE and IgG1 in high-IgE KN1, while low-IgE M1M2 mice had higher IgG2a levels. HER-2 vaccination and passive immunotherapy prolonged the survival in tumor-grafted WT and low-IgE M1M2 strains compared with treatment controls; active vaccination provided the highest benefit. Notably, untreated high-IgE KN1 mice displayed the longest survival of all strains, which could not be further extended by active or passive immunotherapy. Conclusion Active and passive immunotherapies prolong survival in wild type and low-IgE M1M2 mice engrafted with mammary tumors. High-IgE KN1 mice have an innate survival benefit following tumor challenge.(VLID)490427

    Allergy for a Lifetime?

    Get PDF
    As the key molecule of type-I-hypersensitivity, IgE provides specificity for the allergen and links it to the allergic effector functions. Antibodies are secreted by plasma cells and their precursors, the plasma blasts. The fate of plasma cells is a subject of controversy, with respect to their lifetime and persistence in the absence of allergen. In general, plasma cells were for a long time considered as short-lived end products of B-cell differentiation, and many of them are short-lived, although already for more than 20 years evidence has been provided that IgE-secreting plasma cells can persist over months. Today long-lived, "memory" plasma cells are considered to represent a distinct cellular entity of immunological memory, with considerable therapeutic relevance. Long-lived plasma cells resist current therapeutic and experimental approaches such as immunosuppression, e.g. cyclophosphamide, steroids, X-ray irradiation, anti-CD20 antibodies and anti-inflammatory drugs, while the chronic generation of short-lived plasma cells is sensitive to conventional immunosuppression. The seasonal variation in pollen-specific IgE can be suppressed by immunotherapy, indicating that component of the IgE response, which is stimulated with pollen allergen is susceptible to suppression. Targeting of the remaining long-lived, allergen-specific plasma cells, providing the stable IgE-titers, represents a therapeutic challenge. Here we discuss recent evidence suggesting, why current protocols for the treatment of IgE-mediated allergies fail: Memory plasma cells generated by inhalation of the allergen become long-lived and are maintained preferentially in the bone marrow. They do not proliferate, and are refractory to conventional therapies. Current concepts target plasma cells for depletion, e.g. the proteasome inhibitor bortezomib, BAFF and APRIL antagonists and autologous hematopoietic stem cell transplantation
    corecore