10 research outputs found

    SPATIAL CORRELATION BETWEEN DUST AND H α EMISSION IN DWARF IRREGULAR GALAXIES

    Get PDF
    Using a sample of dwarf irregular galaxies selected from the ALFALFA blind HI-survey and observed using the VIMOS IFU, we investigate the relationship between Hα\alpha emission and Balmer optical depth (τb\tau_{\text{b}}). We find a positive correlation between Hα\alpha luminosity surface density and Balmer optical depth in 8 of 11 at \geq 0.8σ\sigma significance (6 of 11 at \geq 1.0σ\sigma) galaxies. Our spaxels have physical scales ranging from 30 to 80 pc, demonstrating that the correlation between these two variables continues to hold down to spatial scales as low as 30 pc. Using the Spearman's rank correlation coefficient to test for correlation between ΣHα\Sigma_{\text{H}\alpha} and τb\tau_{\text{b}} in all the galaxies combined, we find ρ=0.39\rho = 0.39, indicating a positive correlation at 4σ\sigma significance. Our low stellar-mass galaxy results are in agreement with observations of emission line regions in larger spiral galaxies, indicating that this relationship is independent of the size of the galaxy hosting the emission line region. The positive correlation between Hα\alpha luminosity and Balmer optical depth within spaxels is consistent with the hypothesis that young star-forming regions are surrounded by dusty birth-clouds.Comment: 12 Pages, 6 Figures, 3 Tables, Accepted for publication to Ap

    Molecular and atomic gas along and across the main sequence of star-forming galaxies

    Get PDF
    We use spectra from the ALFALFA, GASS and COLD GASS surveys to quantify variations in the mean atomic and molecular gas mass fractions throughout the SFR-M* plane and along the main sequence (MS) of star-forming galaxies. Although galaxies well below the MS tend to be undetected in the Arecibo and IRAM observations, reliable mean atomic and molecular gas fractions can be obtained through a spectral stacking technique. We find that the position of galaxies in the SFR-M* plane can be explained mostly by their global cold gas reservoirs as observed in the HI line, with in addition systematic variations in the molecular-to-atomic ratio and star formation efficiency. When looking at galaxies within +/-0.4 dex of the MS, we find that as stellar mass increases, both atomic and molecular gas mass fractions decrease, stellar bulges become more prominent, and the mean stellar ages increase. Both star formation efficiency and molecular-to-atomic ratios vary little for massive main sequence galaxies, indicating that the flattening of the MS is due to the global decrease of the cold gas reservoirs of galaxies rather than to bottlenecks in the process of converting cold atomic gas to stars.Comment: 9 pages, 6 figures. Accepted for publication in MNRA

    JINGLE V: Dust properties of nearby galaxies derived from hierarchical Bayesian SED fitting

    Get PDF
    We study the dust properties of 192 nearby galaxies from the JINGLE survey using photometric data in the 22-850μm range. We derive the total dust mass, temperature T and emissivity index β of the galaxies through the fitting of their spectral energy distribution (SED) using a single modified black-body model (SMBB). We apply a hierarchical Bayesian approach that reduces the known degeneracy between T and β. Applying the hierarchical approach, the strength of the T-β anti-correlation is reduced from a Pearson correlation coefficient R = -0.79 to R = -0.52. For the JINGLE galaxies we measure dust temperatures in the range 17 - 30 K and dust emissivity indices β in the range 0.6 - 2.2. We compare the SMBB model with the broken emissivity modified black-body (BMBB) and the two modified black-bodies (TMBB) models. The results derived with the SMBB and TMBB are in good agreement, thus applying the SMBB, which comes with fewer free parameters, does not penalize the measurement of the cold dust properties in the JINGLE sample. We investigate the relation between T and β and other global galaxy properties in the JINGLE and Herschel Reference Survey (HRS) sample. We find that β correlates with the stellar mass surface density (R = 0.62) and anti-correlates with the HI mass fraction (MHI/M*, R = -0.65), whereas the dust temperature correlates strongly with the SFR normalized by the dust mass (R = 0.73). These relations can be used to estimate T and β in galaxies with insufficient photometric data available to measure them directly through SED fitting

    JINGLE, a JCMT legacy survey of dust and gas for galaxy evolution studies - I. Survey overview and first results

    Get PDF
    JINGLE is a new JCMT legacy survey designed to systematically study the cold interstellar medium of galaxies in the local Universe. As part of the survey we perform 850 μm continuum measurements with SCUBA-2 for a representative sample of 193 Herschel-selected galaxies with M* \u3e 109 M⊙, as well as integrated CO(2-1) line fluxes with RxA3m for a subset of 90 of these galaxies. The sample is selected from fields covered by the Herschel-ATLAS survey that are also targeted by the MaNGA optical integral-field spectroscopic survey. The new JCMT observations combined with the multiwavelength ancillary data will allow for the robust characterization of the properties of dust in the nearby Universe, and the benchmarking of scaling relations between dust, gas, and global galaxy properties. In this paper we give an overview of the survey objectives and details about the sample selection and JCMT observations, present a consistent 30-band UV-to-FIR photometric catalogue with derived properties, and introduce the JINGLE Main Data Release. Science highlights include the non-linearity of the relation between 850 μm luminosity and CO line luminosity (log LCO(2-1) = 1.372 logL850-1.376), and the serendipitous discovery of candidate z \u3e 6 galaxies

    JINGLE, a JCMT legacy survey of dust and gas for galaxy evolution studies: II. SCUBA-2 850 μm data reduction and dust flux density catalogues

    Get PDF
    We present the SCUBA-2 850μm component of JINGLE, the new JCMT large survey for dust and gas in nearby galaxies, which with 193 galaxies is the largest targeted survey of nearby galaxies at 850 μm. We provide details of our SCUBA-2 data reduction pipeline, optimized for slightly extended sources, and including a calibration model adjusted to match conventions used in other far-infrared (FIR) data. We measure total integrated fluxes for the entire JINGLE sample in 10 infrared/submillimetre bands, including all WISE, Herschel-PACS, Herschel-SPIRE, and SCUBA-2 850 μm maps, statistically accounting for the contamination by CO(J = 3-2) in the 850 μm band. Of our initial sample of 193 galaxies, 191 are detected at 250 μm with a ≥5σ significance. In the SCUBA-2 850 μm band we detect 126 galaxies with ≥3σ significance. The distribution of the JINGLE galaxies in FIR/sub-millimetre colour-colour plots reveals that the sample is not well fit by single modified-blackbody models that assume a single dust-emissivity index (β). Instead, our new 850 μm data suggest either that a large fraction of our objects require β < 1.5, or that a model allowing for an excess of sub-mm emission (e.g. a broken dust emissivity law, or a very cold dust component ≲10 K) is required. We provide relations to convert FIR colours to dust temperature and β for JINGLE-like galaxies. For JINGLE the FIR colours correlate more strongly with star-formation rate surface-density rather than the stellar surface-density, suggesting heating of dust is greater due to younger rather than older stellar-populations, consistent with the low proportion of early-type galaxies in the sample

    JINGLE, a JCMT legacy survey of dust and gas for galaxy evolution studies – I. Survey overview and first results

    Get PDF
    JINGLE is a new JCMT legacy survey designed to systematically study the cold interstellar medium of galaxies in the local Universe. As part of the survey we perform 850 µm continuum measurements with SCUBA-2 for a representative sample of 193 Herschel-selected galaxies with M* > 109 M⊙, as well as integrated CO(2–1) line fluxes with RxA3m for a subset of 90 of these galaxies. The sample is selected from fields covered by the Herschel-ATLAS survey that are also targeted by the MaNGA optical integral-field spectroscopic survey. The new JCMT observations combined with the multiwavelength ancillary data will allow for the robust characterization of the properties of dust in the nearby Universe, and the benchmarking of scaling relations between dust, gas, and global galaxy properties. In this paper we give an overview of the survey objectives and details about the sample selection and JCMT observations, present a consistent 30-band UV-to-FIR photometric catalogue with derived properties, and introduce the JINGLE Main Data Release. Science highlights include the non-linearity of the relation between 850 µm luminosity and CO line luminosity (log LCO(2–1) =  1.372 logL850–1.376), and the serendipitous discovery of candidate z > 6 galaxies
    corecore