90 research outputs found

    Inelastic Dark Matter at DAMA, CDMS and Future Experiments

    Get PDF
    The DAMA annual modulation signature, interpreted as evidence for a spin-independent WIMP coupling, seems in conflict with null results from CDMS. However, in models of ``inelastic dark matter'', the experiments are compatible. Inelastic dark matter can arise in supersymmetric theories as the real component of a sneutrino mixed with a singlet scalar. In contrast with ordinary sneutrino dark matter, such particles can satisfy all experimental constraints while giving the appropriate relic abundance. We discuss the modifications to the signal seen at DAMA, in particular noting the strong suppression of low energy events in both modulated and unmodulated components. We discuss future experiments, with emphasis on distinguishing inelastic dark matter from ordinary dark matter, and stressing the significance of experiments with heavy target nuclei, such as xenon and tungsten.Comment: 4 pages; to appear in the proceedings of 5th International UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe (DM 2002), Marina del Rey, California, 20-22 Feb 200

    Expected Performance of CryoArray

    Get PDF
    WIMP-nucleon cross sections below 10^(-9) pb may be probed by ton-scale experiments with low thresholds and background rates ~20 events per year. An array of cryogenic detectors ("CryoArray") could perform well enough to reach this goal. Sufficient discrimination and background suppression of photons has already been demonstrated. Reduction of neutron backgrounds may be achieved by siting the experiment deep enough. Removal of the surface-electron backgrounds alone has not yet been demonstrated, but the reductions required even for this troublesome background are quite modest and appear achieveable.Comment: 4 pages, 2 figures. Talk at DM2002 Conference, Marina del Rey, CA, Feb 20-22, 200

    Triaxial Haloes and Particle Dark Matter Detection

    Get PDF
    This paper presents the properties of a family of scale-free triaxial haloes. We adduce arguments to suggest that the velocity ellipsoids of such models are aligned in conical coordinates. We provide an algorithm to find the set of conically aligned velocity second moments that support a given density against the gravity field of the halo. The case of the logarithmic ellipsoidal model -- the simplest triaxial generalisation of the familiar isothermal sphere -- is examined in detail. The velocity dispersions required to hold up the self-consistent model are analytic. The velocity distribution of the dark matter can be approximated as a triaxial Gaussian with semiaxes equal to the velocity dispersions. There are roughly twenty experiments worldwide that are searching for evidence of scarce interactions between weakly-interacting massive-particle dark matter (WIMPs) and detector nuclei. The annual modulation signal, caused by the Earth's rotation around the Sun, is a crucial discriminant between WIMP events and the background. The greatest rate is in June, the least in December. We compute the differential detection rate for energy deposited by the rare WIMP-nucleus interactions in our logarithmic ellipsoidal halo models. Triaxiality and velocity anisotropy change the total rate by up to 40 %, and have a substantial effect on the amplitude of the annual modulation signal. The overall rate is greatest, but the amplitude of the modulation is weakest, in our radially anisotropic halo models. Even the sign of the signal can be changed. Restricting attention to low energy events, the models predict that the maximum rate occurs in December, and not in June.Comment: In press, Monthly Notice

    Detectability of a subdominant density component of cold dark matter

    Get PDF
    Here we examine the detectability of collisionless dark matter candidates that may constitute not all but only a subdominant component of galactic cold dark matter. We show that current axion searches are not suited for a subdominant component, while direct WIMP searches would not be severely affected by the reduced density. In fact, the direct detection rates of neutralinos stay almost constant even if neutralinos constitute 1% of the halo dark matter. Only for lower densities do the rates decrease with density. Even neutralinos accounting for only 10−410^{-4} of the local dark halo density are within proposed future discovery limits. We comment also on indirect WIMP searches.Comment: 11 pages, 3 figures (references added, minor rewriting

    GENIUS-TF: a test facility for the GENIUS project

    Get PDF
    GENIUS is a proposal for a large scale detector of rare events. As a first step of the experiment, a small test version, the GENIUS test facility, will be build up at the Laboratorio Nazionale del Gran Sasso (LNGS). With about 40 kg of natural Ge detectors operated in liquid nitrogen, GENIUS-TF could exclude (or directly confirm) the DAMA annual modulation signature within about two years of measurement.Comment: 14 pages, latex, 5 figures, 3 tables; submitted to Astroparticle Physic

    Measurement of T\u3csub\u3ec\u3c/sub\u3e suppression in tungsten using magnetic impurities

    Get PDF
    We have measured the effects of dilute magnetic-atom doping on the superconducting transition temperature of tungsten thin films. Our “Tc tuning” technique is accurate, precise, and simple. Experiments were performed using dc-magnetron-sputtered tungsten films with undoped values of Tc in the range of 70–150 mK. The magnetic-atom doping was achieved using ion implantation. Specific Tc suppressions of between 5% and 65% were targeted and observed in this study. The transition width of each undoped sample was ≈1 mK and the transition widths remained sharp after implantation with 56Fe+ ions. Our data are in good agreement with predictions of a linear dependence of Tc suppression with increasing magnetic-atom concentration, in the small concentration limit. At higher concentrations, antiferromagnetic coupling between the magnetic dopant atoms becomes important and the Tc-suppression effect is diminished. We use our Tc data to calculate the Abrikosov–Gor’kov (AG) and Ruderman–Kittel–Kasuya–Yosida (RKKY) spin–flip relaxation parameters τAG and τRKKY. We conclude with a brief discussion of applications of the Tc-tuning technique, and present our plans for future studies in this area

    Search for Supersymmetric Dark Matter with Superfluid He3 (MACHe3)

    Full text link
    MACHe3 (MAtrix of Cells of superfluid He3) is a project of a new detector for direct Dark Matter search, using superfluid He3 as a sensitive medium. This paper presents a phenomenological study done with the DarkSUSY code, in order to investigate the discovery potential of this project of detector, as well as its complementarity with existing and planned devices.Comment: 15 pages, 5 figures, submitted to Phys. Letters B, minor changes in the tex

    Nucleon scattering with higgsino and wino cold dark matter

    Get PDF
    Neutralinos that are mostly wino or higgsino are shown to be compatible with the recent DAMA annual modulation signal. The nucleon scattering rates for these dark matter candidates are typically an order of magnitude above the oft-considered bino. Although thermal evolution of higgsino and wino number densities in the early universe implies that they are not viable dark matter candidates, non-thermal sources, such as from gravitino or moduli decay in anomaly mediated supersymmetry breaking, suggest that they can be the dominant source of cold dark matter. Their stealthiness at high energy colliders gives even more impetus to analyze nucleon scattering detection methods. We also present calculations for their predicted scattering rate with Germanium detectors, which have yet to see evidence of WIMP scattering.Comment: 16 pages, LaTex, 4 figures, uses feynMF, minor changes made for PRD publicatio

    Generalized Analysis of Weakly-Interacting Massive Particle Searches

    Get PDF
    We perform a generalized analysis of data from WIMP search experiments for point-like WIMPs of arbitrary spin and general Lorenz-invariant WIMP-nucleus interaction. We show that in the non-relativistic limit only spin-independent (SI) and spin-dependent (SD) WIMP-nucleon interactions survive, which can be parameterized by only five independent parameters. We explore this five-dimensional parameter space to determine whether the annual modulation observed in the DAMA experiment can be consistent with all other experiments. The pure SI interaction is ruled out except for very small region of parameter space with the WIMP mass close to 50 GeV and the ratio of the WIMP-neutron to WIMP-proton SI couplings −0.77≀fn/fp≀−0.75-0.77\le f_n/f_p\le -0.75. For the predominantly SD interaction, we find an upper limit to the WIMP mass of about 18 GeV, which can only be weakened if the constraint stemming from null searches for energetic neutrinos from WIMP annihilation the Sun is evaded. None of the regions of the parameter space that can reconcile all WIMP search results can be easily accommodated in the minimal supersymmetric extension of the standard model.Comment: 27 pages, 3 figure
    • 

    corecore