33 research outputs found

    Conditions for maintaining and eroding pseudo-overdominance and its contribution to inbreeding depression

    Get PDF
    Classical models that ignore linkage predict that deleterious recessive mutations should purge or fix within inbred populations, yet inbred populations often retain moderate to high segregating load. True overdominance could generate balancing selection strong enough to sustain inbreeding depression even within inbred populations, but this is considered rare. However, arrays of deleterious recessives linked in repulsion could generate appreciable pseudo-overdominance that would also sustain segregating load. We used simulations to explore how long pseudo-overdominant (POD) zones persist once created (e.g., by hybridization between populations fixed for alternative mildly deleterious mutations). Balanced haplotype loads, tight linkage, and moderate to strong cumulative selective effects all serve to maintain POD zones. Tight linkage is key, suggesting that such regions are most likely to arise and persist in low recombination regions (like inversions). Selection and drift unbalance the load, eventually eliminating POD zones, but this process is quite slow under strong pseudo-overdominance. Background selection accelerates the loss of weak POD zones but reinforces strong ones in inbred populations by disfavoring homozygotes. Models and empirical studies of POD dynamics within populations help us understand how POD zones may allow the load to persist, greatly affecting load dynamics and mating systems evolutio

    Mort et stérilité avec un zeste de suicide évolutif : Interaction entre mutations délétères et taille de population, et l’évolution de l’autofécondation

    No full text
    La présence des mutations délétères a favorisé l'évolution de mécanismes, au niveau cellulaire et au niveau des organismes (e.g. les régimes de reproduction), permettant de diminuer leurs effets négatifs. Au cours de cette thèse nous avons étudié leur impact sur la taille des populations à travers des modèles tenant compte de l'interaction entre la démographie et la sélection, cette interaction étant souvent mise de coté dans les modèles conventionnels de génétique des populations. Dans un contexte déterministe à un seul locus des mutations somatiques et gamétiques influencent la taille et le fardeau génétique des populations (ces derniers étant dépendants du moment d’expression des mutations dans le cycle de vie). Nos modèles stochastiques avec un grand nombre de locus indiquent que la viabilité des populations dépend des paramètres démographiques et génétiques (taux de mutation, effet délétère des mutations). L'autofécondation est généralement avantageuse, augmentant la taille et la viabilité des populations, mais lorsque les mutations sont de faible effet un régime d'autogamie stricte mène à l'extinction par fonte mutationelle. En permettant l'évolution de l'autofécondation à partir d'une population allogame nous observons des cas de suicide évolutif où les populations évoluent vers l'autogamie stricte et s'éteignent, ce qui pourrait expliquer les taux d’extinctions élevés des espèces auto-fécondantes comparées aux allo-fécondantes. Ces modèles prédisent que la taille des populations pourrait être une conséquence et non une cause de leurs propriétés génétiques, appuyant sur l’importance de prendre en compte leur interaction dans l'étude de l'évolution des populations.As the ultimate source of genetic variation, mutation has the inconvenience of introducing deleterious mutations. These mutations shape the evolution of species, from genetic mechanisms on the cellular level to reproductive systems, which lessen their effects on fitness. In this thesis we explore how these mutations influence population size by allowing the interaction between population size and selection, which has been little explored in conventional population genetics models. In a deterministic context with a single locus, germ-line and somatic mutations influence population size and the mutation load, both which depend on the timing of the expression of these mutations. Multi-locus individual based models show that population viability depends on the demographic properties and on the rate of introduction and impact of mutations. Though self-fertilisation generally increases population viability, strictly self-fertilising populations go extinct due to mutational meltdown when mutations are of small effect. When selfing is allowed to evolve from an outcrossing reproductive regime, there are cases of evolutionary suicide where strict selfing evolves and leads to extinction. We predict that the genetic properties of populations may not be a consequence but a cause of population size. We have emphasized the importance of taking the demographic consequences of deleterious mutations into account when studying the evolution of populations, as in the case of the evolution of self-fertilisation where the previously undetected evolutionary suicide was observed. This result may explain the observed higher extinction rates in selfing compared to outcrossing species

    Data from: The double edged sword: the demographic consequences of the evolution of self-fertilisation

    No full text
    Phylogenies indicate that the transition from outcrossing to selfing is frequent, with selfing populations being more prone to extinction. The rates of transition to selfing and extinction, acting on different timescales, could explain the observed distributions of extant selfing species among taxa. However, phylogenetic and theoretical studies consider these mechanisms independently, i.e. transitions do not cause extinction. Here, we theoretically explore the demographic consequences of the evolution of self-fertilization. Deleterious mutations and mutations modifying the selfing rate are recurrently introduced and the number of offspring depends on individual fitness, allowing for a demographic feedback. We show that mutational meltdowns can be triggered in populations evolving near strict selfing. Populations having survived the demographic crash are more stable than ancestral outcrossing populations once deleterious mutations are purged. The relatively rapid time-scales in which extinctions occur indicate that during evolutionary transitions the accumulation of deleterious mutations may not be the cause of extinctions observed on longer time scales, which in turn could lead to the underestimation of transition rates from outcrossing to selfing

    Epistasis, inbreeding depression and the evolution of self-fertilization

    No full text
    International audienceInbreeding depression resulting from partially recessive deleterious alleles is thought to be the main genetic factor preventing self-fertilizing mutants from spreading in outcrossing hermaphroditic populations. However, deleterious alleles may also generate an advantage to selfers in terms of more efficient purging, while the effects of epistasis among those alleles on inbreeding depression and mating system evolution remain little explored. In this paper, we use a general model of selection to disentangle the effects of different forms of epistasis (additive-by-additive, additive-by-dominance and dominance-by-dominance) on inbreeding depression and on the strength of selection for selfing. Models with fixed epistasis across loci, and models of stabilizing selection acting on quantitative traits (generating distributions of epistasis) are considered as special cases. Besides its effects on inbreeding depression, epistasis may increase the purging advantage associated with selfing (when it is negative on average), while the variance in epistasis favors selfing through the generation of linkage disequilibria that increase mean fitness. Approximations for the strengths of these effects are derived, and compared with individual-based simulation results

    Data from: Effects of demographic stochasticity and life-history strategies on times and probabilities to fixation

    No full text
    How life-history strategies influence the evolution of populations is not well understood. Most existing models stem from the Wright-Fisher model which considers discrete generations and a fixed population size, thus not taking into account any potential consequences of overlapping generations and demographic stochasticity on allelic frequencies. We introduce an individual-based model in which both population size and genotypic frequencies at a single bi-allelic locus are emergent properties of the model. Demographic parameters can be defined so as to represent a large range of r and K life-history strategies in a stable environment, and appropriate fixed effective population sizes are calculated so as to compare our model to the Wright-Fisher diffusion. Our results indicate that models with fixed population size that stem from the Wright-Fisher diffusion cannot fully capture the consequences of demographic stochasticity on allele fixation in long-lived species with low reproductive rates. This discrepancy is accentuated in the presence of demo-genetic feedback. Furthermore, we predict that populations with K- life-histories should maintain lower genetic diversity than those with r- life-histories

    C++ simulation program

    No full text
    Code to simulate populations with varying size in which self-fertilisation can evolve

    Data from: Effects of partial selfing on the equilibrium genetic variance, mutation load and inbreeding depression under stabilizing selection

    No full text
    The mating system of a species is expected to have important effects on its genetic diversity. In this paper, we explore the effects of partial selfing on the equilibrium genetic variance Vg, mutation load L and inbreeding depression δ under stabilizing selection acting on a arbitrary number n of quantitative traits coded by biallelic loci with additive effects. When the U/n ratio is low (where U is the total haploid mutation rate on selected traits) and effective recombination rates are sufficiently high, genetic associations between loci are negligible and the genetic variance, mutation load and inbreeding depression are well predicted by approximations based on single-locus models. For higher values of U/n and/or lower effective recombination, moderate genetic associations generated by epistasis tend to increase Vg, L and δ, this regime being well predicted by approximations including the effects of pairwise associations between loci. For yet higher values of U/n and/or lower effective recombination, a different regime is reached under which the maintenance of coadapted gene complexes reduces Vg, L and δ. Simulations indicate that the values of Vg, L and δ are little affected by assumptions regarding the number of possible alleles per locus

    The double edged sword: The demographic consequences of the evolution of self-fertilization

    No full text
    AGAP : GE2popInternational audiencePhylogenies indicate that the transition from outcrossing to selfing is frequent, with selfing populations being more prone to extinction. The rates of transition to selfing and extinction, acting on different timescales, could explain the observed distributions of extant selfing species among taxa. However, phylogenetic and theoretical studies consider these mechanisms independently, i.e. transitions do not cause extinction. Here, we theoretically explore the demographic consequences of the evolution of self-fertilization. Deleterious mutations and mutations modifying the selfing rate are recurrently introduced and the number of offspring depends on individual fitness, allowing for a demographic feedback. We show that mutational meltdowns can be triggered in populations evolving near strict selfing. Populations having survived the demographic crash are more stable than ancestral outcrossing populations once deleterious mutations are purged. The relatively rapid time-scales in which extinctions occur indicate that during evolutionary transitions the accumulation of deleterious mutations may not be the cause of extinctions observed on longer time scales, which in turn could lead to the underestimation of transition rates from outcrossing to selfing

    Effects of partial selfing on the equilibrium genetic variance, mutation load, and inbreeding depression under stabilizing selection

    No full text
    International audienceThe mating system of a species is expected to have important effects on its genetic diversity. In this article, we explore the effects of partial selfing on the equilibrium genetic variance V-g, mutation load L, and inbreeding depression under stabilizing selection acting on a arbitrary number n of quantitative traits coded by biallelic loci with additive effects. When the U/n ratio is low (where U is the total haploid mutation rate on selected traits) and effective recombination rates are sufficiently high, genetic associations between loci are negligible and the genetic variance, mutation load, and inbreeding depression are well predicted by approximations based on single-locus models. For higher values of U/n and/or lower effective recombination, moderate genetic associations generated by epistasis tend to increase V-g, L, and , this regime being well predicted by approximations including the effects of pairwise associations between loci. For yet higher values of U/n and/or lower effective recombination, a different regime is reached under which the maintenance of coadapted gene complexes reduces V-g, L, and . Simulations indicate that the values of V-g, L, and are little affected by assumptions regarding the number of possible alleles per locus
    corecore