108 research outputs found

    Targeting the Mitotic Checkpoint to Kill Tumor Cells

    Get PDF
    One of the most common hallmarks of cancer cells is aneuploidy or an abnormal number of chromosomes. This abnormal chromosome content is a consequence of chromosome missegregation during mitosis, a defect that is seen more frequently in tumor cell divisions as in normal cell divisions. In fact, a large fraction of human tumors display a chromosome instable phenotype, meaning that they very frequently missegregate chromosomes. This can cause variegated aneuploidy within the tumor tissue. It has been argued that this hallmark of cancer could be exploited in anti-cancer therapies. Here we test this hypothesis by inactivation of the mitotic checkpoint through RNAi-mediated depletion of an essential checkpoint component, Mps1. The mitotic checkpoint delays segregation of chromosomes during mitosis until all chromosomes are properly attached to the mitotic spindle. Its inactivation will therefore lead to increased segregation errors. Indeed, we show that this can lead to increased cell death in tumor cells. We demonstrate that increased cell death is associated with a dramatic increase in segregation errors. This suggests that inhibition of the mitotic checkpoint might represent a useful anti-cancer strategy

    Gaugino Mass Nonuniversality and Dark Matter in SUGRA, Strings and D Brane Models

    Full text link
    The effects of nonuniversality of gaugino masses on dark matter are examined within supersymmetric grand unification, and in string and D brane models with R parity invariance. In SU(5) unified models nonuniversality in the gaugino sector can be generated via the gauge kinetic energy function which may depend on the 24, 75 and 200 dimensional Higgs representations. We also consider string models which allow for nonuniversality of gaugino masses and D brane models where nonuniversality arises from embeddings of the Standard Model gauge group on five branes and nine branes. It is found that with gaugino mass nonuniversality the range of the LSP mass can be extended much beyond the range allowed in the universal SUGRA case, up to about 600 GeV even without coannihilation effects in some regions of the parameter space. The effects of coannihilation are not considered and inclusion of these effects may further increase the allowed neutralino mass range. Similarly with the inclusion of gaugino mass nonuniversality, the neutralino-proton (χp\chi -p) cross-section can increase by as much as a factor of 10 in some of regions of the parameter space. An analysis of the uncertainties in the quark density content of the nucleon is given and their effects on χp\chi -p cross-section are discussed. The predictions of our analysis including nonuniversality is compared with the current limits from dark matter detectors and implications for future dark matter searches are discussed.Comment: Revised version, 23 pages, Latex, and 7 figure

    Effects of Thioglycolic Acid on Parthenogenetic Activation of Xenopus Oocytes

    Get PDF
    BACKGROUND: Existing in Permanent-wave solutions (PWS), thioglycolic acid (TGA) is widely used in hairdressing industry for its contribution to hair styling. However, the toxicity of TGA, especially its reproductive toxicity, gradually calls the attention of more and more researchers. METHOD: In this work, xenopus oocytes were pretreated with different concentration of TGA, and then activated by calcium ionophore A23187. During culture, the oocytes activation rates were taken note at different time after adding calcium ionophore A23187. At the end of the culture period, the nuclear status was detected under confocal microscope. In addition, some other samples were collected for Western-Blotting analysis. RESULT: TGA significantly inhibited the oocytes activation rate and pronuclear formation. It may be resulted from the inhibition of the degradation of p-ERK1, Mos and CyclinB2. CONCLUSION: TGA inhibits in vitro parthenogenetic activation of xenopus oocytes with inhibited the degradation of proteins involved in mitogenic-activated protein kinase (MAPK) and maturation-promoting factor (MPF) pathways

    A Dynamical Model of Oocyte Maturation Unveils Precisely Orchestrated Meiotic Decisions

    Get PDF
    Maturation of vertebrate oocytes into haploid gametes relies on two consecutive meioses without intervening DNA replication. The temporal sequence of cellular transitions driving eggs from G2 arrest to meiosis I (MI) and then to meiosis II (MII) is controlled by the interplay between cyclin-dependent and mitogen-activated protein kinases. In this paper, we propose a dynamical model of the molecular network that orchestrates maturation of Xenopus laevis oocytes. Our model reproduces the core features of maturation progression, including the characteristic non-monotonous time course of cyclin-Cdks, and unveils the network design principles underlying a precise sequence of meiotic decisions, as captured by bifurcation and sensitivity analyses. Firstly, a coherent and sharp meiotic resumption is triggered by the concerted action of positive feedback loops post-translationally activating cyclin-Cdks. Secondly, meiotic transition is driven by the dynamic antagonism between positive and negative feedback loops controlling cyclin turnover. Our findings reveal a highly modular network in which the coordination of distinct regulatory schemes ensures both reliable and flexible cell-cycle decisions

    BubR1 as a prognostic marker for recurrence-free survival rates in epithelial ovarian cancers

    Get PDF
    BACKGROUND: Epithelial ovarian cancer is one of the most lethal malignancies, and has a high recurrence rate. Thus, prognostic markers for recurrence are crucial for the care of ovarian cancer. As ovarian cancers frequently exhibit chromosome instability, we aimed at assessing the prognostic significance of two key mitotic kinases, BubR1 and Aurora A. METHODS: We analysed paraffin-embedded tissue sections from 160 ovarian cancer patients whose clinical outcomes had been tracked after first-line treatment. RESULTS: The median recurrence-free survival in patients with a positive and negative expression of BubR1 was 27 and 83 months, respectively (Po0.001). A positive BubR1 expression was also associated with advanced stage, serous histology and high grade. In contrast, Aurora A immunostaining did not correlate with any of the clinical parameters analysed. CONCLUSION: BubR1, but not Aurora A, is a prognostic marker for recurrence-free survival rates in epithelial ovarian cancers.Research in the H Lee laboratory is funded by the National Research Laboratory Program from the Korean ministry of Education and Science (ROA-2008-000-20023-0). This work was also supported by the Seoul National University Hospital Grant (0420080450), the 21C Frontier Functional Genome Project (FG06- 2-14) of the Korean ministry of Education and Science, Korea Research Foundation (KRF-2005-C00097), and the National R&D Program for Cancer Control (0620070) from the Korean ministry of Health welfare and Family Affairs. Imaging facilities in the H Lee laboratory are funded by RCFC (R11-2005-009-04003-0) of the SRC program from KOSEF

    Modulators of Prostate Cancer Cell Proliferation and Viability Identified by Short-Hairpin RNA Library Screening

    Get PDF
    There is significant need to identify novel prostate cancer drug targets because current hormone therapies eventually fail, leading to a drug-resistant and fatal disease termed castration-resistant prostate cancer. To functionally identify genes that, when silenced, decrease prostate cancer cell proliferation or induce cell death in combination with antiandrogens, we employed an RNA interference-based short hairpin RNA barcode screen in LNCaP human prostate cancer cells. We identified and validated four candidate genes (AKT1, PSMC1, STRADA, and TTK) that impaired growth when silenced in androgen receptor positive prostate cancer cells and enhanced the antiproliferative effects of antiandrogens. Inhibition of AKT with a pharmacologic inhibitor also induced apoptosis when combined with antiandrogens, consistent with recent evidence for PI3K and AR pathway crosstalk in prostate cancer cells. Recovery of hairpins targeting a known prostate cancer pathway validates the utility of shRNA library screening in prostate cancer as a broad strategy to identify new candidate drug targets

    Mutations in CENPE define a novel kinetochore-centromeric mechanism for microcephalic primordial dwarfism

    Get PDF
    Defects in centrosome, centrosomal-associated and spindle-associated proteins are the most frequent cause of primary microcephaly (PM) and microcephalic primordial dwarfism (MPD) syndromes in humans. Mitotic progression and segregation defects, microtubule spindle abnormalities and impaired DNA damage-induced G2-M cell cycle checkpoint proficiency have been documented in cell lines from these patients. This suggests that impaired mitotic entry, progression and exit strongly contribute to PM and MPD. Considering the vast protein networks involved in coordinating this cell cycle stage, the list of potential target genes that could underlie novel developmental disorders is large. One such complex network, with a direct microtubule-mediated physical connection to the centrosome, is the kinetochore. This centromeric-associated structure nucleates microtubule attachments onto mitotic chromosomes. Here, we described novel compound heterozygous variants in CENPE in two siblings who exhibit a profound MPD associated with developmental delay, simplified gyri and other isolated abnormalities. CENPE encodes centromere-associated protein E (CENP-E), a core kinetochore component functioning to mediate chromosome congression initially of misaligned chromosomes and in subsequent spindle microtubule capture during mitosis. Firstly, we present a comprehensive clinical description of these patients. Then, using patient cells we document abnormalities in spindle microtubule organization, mitotic progression and segregation, before modeling the cellular pathogenicity of these variants in an independent cell system. Our cellular analysis shows that a pathogenic defect in CENP-E, a kinetochore-core protein, largely phenocopies PCNT-mutated microcephalic osteodysplastic primordial dwarfism-type II patient cells. PCNT encodes a centrosome-associated protein. These results highlight a common underlying pathomechanism. Our findings provide the first evidence for a kinetochore-based route to MPD in humans

    Chromosomal Instability by Inefficient Mps1 Auto-Activation Due to a Weakened Mitotic Checkpoint and Lagging Chromosomes

    Get PDF
    BACKGROUND: Chromosomal instability (CIN), a feature widely shared by cells from solid tumors, is caused by occasional chromosome missegregations during cell division. Two of the causes of CIN are weakened mitotic checkpoint signaling and persistent merotelic attachments that result in lagging chromosomes during anaphase. PRINCIPAL FINDINGS: Here we identify an autophosphorylation event on Mps1 that is required to prevent these two causes of CIN. Mps1 is phosphorylated in mitotic cells on at least 7 residues, 4 of which by autophosphorylation. One of these, T676, resides in the activation loop of the kinase domain and a mutant that cannot be phosphorylated on T676 is less active than wild-type Mps1 but is not kinase-dead. Strikingly, cells in which endogenous Mps1 was replaced with this mutant are viable but missegregate chromosomes frequently. Anaphase is initiated in the presence of misaligned and lagging chromosomes, indicative of a weakened checkpoint and persistent merotelic attachments, respectively. CONCLUSIONS/SIGNIFICANCE: We propose that full activity of Mps1 is essential for maintaining chromosomal stability by allowing resolution of merotelic attachments and to ensure that single kinetochores achieve the strength of checkpoint signaling sufficient to prevent premature anaphase onset and chromosomal instability. To our knowledge, phosphorylation of T676 on Mps1 is the first post-translational modification in human cells of which the absence causes checkpoint weakening and CIN without affecting cell viability

    Quantitative Mass Spectrometry Analysis Reveals Similar Substrate Consensus Motif for Human Mps1 Kinase and Plk1

    Get PDF
    Background Members of the Mps1 kinase family play an essential and evolutionarily conserved role in the spindle assembly checkpoint (SAC), a surveillance mechanism that ensures accurate chromosome segregation during mitosis. Human Mps1 (hMps1) is highly phosphorylated during mitosis and many phosphorylation sites have been identified. However, the upstream kinases responsible for these phosphorylations are not presently known. Methodology/Principal Findings Here, we identify 29 in vivo phosphorylation sites in hMps1. While in vivo analyses indicate that Aurora B and hMps1 activity are required for mitotic hyper-phosphorylation of hMps1, in vitro kinase assays show that Cdk1, MAPK, Plk1 and hMps1 itself can directly phosphorylate hMps1. Although Aurora B poorly phosphorylates hMps1 in vitro, it positively regulates the localization of Mps1 to kinetochores in vivo. Most importantly, quantitative mass spectrometry analysis demonstrates that at least 12 sites within hMps1 can be attributed to autophosphorylation. Remarkably, these hMps1 autophosphorylation sites closely resemble the consensus motif of Plk1, demonstrating that these two mitotic kinases share a similar substrate consensus. Conclusions/Significance hMps1 kinase is regulated by Aurora B kinase and its autophosphorylation. Analysis on hMps1 autophosphorylation sites demonstrates that hMps1 has a substrate preference similar to Plk1 kinase
    corecore