1,153 research outputs found
Pair Production of the Lightest Chargino via Gluon-Gluon Collisions
The production of the lightest chargino pair from gluon-gluon fusion is
studied in the minimal supersymmetric model(MSSM) at proton-proton colliders.
We find that with the chosen parameters, the production rate of the subprocess
can be over 2.7 femto barn when the chargino is higgsino-like, and the
corresponding total cross section in proton-proton collider can reach 56 femto
barn at the LHC in the CP-conserving MSSM. It shows that this loop mediated
subprocess can be competitive with the standard Drell-Yan subprocess in
proton-proton colliders, especially at the LHC. Furthermore, our calculation
shows it would be possible to extract information about some CP-violating phase
parameters, if we collected enough chargino pair events.Comment: 39 pages, LaTex, 8 figure
Differential Cross Section for Higgs Boson Production Including All-Orders Soft Gluon Resummation
The transverse momentum distribution is computed for inclusive Higgs
boson production at the energy of the CERN Large Hadron Collider. We focus on
the dominant gluon-gluon subprocess in perturbative quantum chromodynamics and
incorporate contributions from the quark-gluon and quark-antiquark channels.
Using an impact-parameter -space formalism, we include all-orders
resummation of large logarithms associated with emission of soft gluons. Our
resummed results merge smoothly at large with the fixed-order
expectations in perturbative quantum chromodynamics, as they should, with no
need for a matching procedure. They show a high degree of stability with
respect to variation of parameters associated with the non-perturbative input
at low . We provide distributions for Higgs boson masses
from to 200 GeV. The average transverse momentum at zero rapidity
grows approximately linearly with mass of the Higgs boson over the range ~GeV. We provide analogous results
for boson production, for which we compute GeV. The
harder transverse momentum distribution for the Higgs boson arises because
there is more soft gluon radiation in Higgs boson production than in
production.Comment: 42 pages, latex, 26 figures. All figures replaced. Some changes in
wording. Published in Phys. Rev. D67, 034026 (2003
Beautiful Mirrors and Precision Electroweak Data
The Standard Model (SM) with a light Higgs boson provides a very good
description of the precision electroweak observable data coming from the LEP,
SLD and Tevatron experiments. Most of the observables, with the notable
exception of the forward-backward asymmetry of the bottom quark, point towards
a Higgs mass far below its current experimental bound. The disagreement, within
the SM, between the values for the weak mixing angle as obtained from the
measurement of the leptonic and hadronic asymmetries at lepton colliders, may
be taken to indicate new physics contributions to the precision electroweak
observables. In this article we investigate the possibility that the inclusion
of additional bottom-like quarks could help resolve this discrepancy. Two
inequivalent assignments for these new quarks are analysed. The resultant fits
to the electroweak data show a significant improvement when compared to that
obtained in the SM. While in one of the examples analyzed, the exotic quarks
are predicted to be light, with masses below 300 GeV, and the Higgs tends to be
heavy, in the second one the Higgs is predicted to be light, with a mass below
250 GeV, while the quarks tend to be heavy, with masses of about 800 GeV. The
collider signatures associated with the new exotic quarks, as well as the
question of unification of couplings within these models and a possible
cosmological implication of the new physical degrees of freedom at the weak
scale are also discussed.Comment: 21 pages, 4 embedded postscript figures, LaTeX. Two minor corrections
performe
Atmospheric aerosols at the Pierre Auger Observatory and environmental implications
The Pierre Auger Observatory detects the highest energy cosmic rays.
Calorimetric measurements of extensive air showers induced by cosmic rays are
performed with a fluorescence detector. Thus, one of the main challenges is the
atmospheric monitoring, especially for aerosols in suspension in the
atmosphere. Several methods are described which have been developed to measure
the aerosol optical depth profile and aerosol phase function, using lasers and
other light sources as recorded by the fluorescence detector. The origin of
atmospheric aerosols traveling through the Auger site is also presented,
highlighting the effect of surrounding areas to atmospheric properties. In the
aim to extend the Pierre Auger Observatory to an atmospheric research platform,
a discussion about a collaborative project is presented.Comment: Regular Article, 16 pages, 12 figure
Bottom-Tau Unification in SUSY SU(5) GUT and Constraints from b to s gamma and Muon g-2
An analysis is made on bottom-tau Yukawa unification in supersymmetric (SUSY)
SU(5) grand unified theory (GUT) in the framework of minimal supergravity, in
which the parameter space is restricted by some experimental constraints
including Br(b to s gamma) and muon g-2. The bottom-tau unification can be
accommodated to the measured branching ratio Br(b to s gamma) if superparticle
masses are relatively heavy and higgsino mass parameter \mu is negative. On the
other hand, if we take the latest muon g-2 data to require positive SUSY
contributions, then wrong-sign threshold corrections at SUSY scale upset the
Yukawa unification with more than 20 percent discrepancy. It has to be
compensated by superheavy threshold corrections around the GUT scale, which
constrains models of flavor in SUSY GUT. A pattern of the superparticle masses
preferred by the three requirements is also commented.Comment: 21pages, 6figure
Bosonic Quartic Couplings at LHC
We analyze the potential of the CERN Large Hadron Collider (LHC) to study
anomalous quartic vector-boson interactions Z Z gamma gamma, Z Z Z gamma, W+ W-
gamma gamma, and W+ W- Z gamma through the weak boson fusion processes q q -> q
q gamma gamma and q q -> q q gamma Z(-> l+ l-) with l = electron or muon. After
a careful study of the backgrounds and how to extract them from the data, we
show that the process p p -> j j gamma l+ l- is potentially the most sensitive
to deviations from the Standard Model, improving the sensitivity to anomalous
couplings by up to a factor 10^4 (10^2) with respect to the present direct
(indirect) limits.Comment: 18 pages, 2 figures, revised versio
Primordial Nucleosynthesis Constraints on Z' Properties
In models involving new TeV-scale Z' gauge bosons, the new U(1)' symmetry
often prevents the generation of Majorana masses needed for a conventional
neutrino seesaw, leading to three superweakly interacting ``right-handed''
neutrinos nu_R, the Dirac partners of the ordinary neutrinos. These can be
produced prior to big bang nucleosynthesis by the Z' interactions, leading to a
faster expansion rate and too much ^4He. We quantify the constraints on the Z'
properties from nucleosynthesis for Z' couplings motivated by a class of E_6
models parametrized by an angle theta_E6. The rate for the annihilation of
three approximately massless right-handed neutrinos into other particle pairs
through the Z' channel is calculated. The decoupling temperature, which is
higher than that of ordinary left-handed neutrinos due to the large Z' mass, is
evaluated, and the equivalent number of new doublet neutrinos Delta N_nu is
obtained numerically as a function of the Z' mass and couplings for a variety
of assumptions concerning the Z-Z' mixing angle and the quark-hadron transition
temperature T_c. Except near the values of theta_E6 for which the Z' decouples
from the right-handed neutrinos, the Z' mass and mixing constraints from
nucleosynthesis are much more stringent than the existing laboratory limits
from searches for direct production or from precision electroweak data, and are
comparable to the ranges that may ultimately be probed at proposed colliders.
For the case T_c = 150 MeV with the theoretically favored range of Z-Z'
mixings, Delta N_nu 4.3 TeV for any value of theta_E6. Larger
mixing or larger T_c often lead to unacceptably large Delta N_nu except near
the nu_R decoupling limit.Comment: 22 pages, 5 figures; two additional references adde
Solar Neutrino Masses and Mixing from Bilinear R-Parity Broken Supersymmetry: Analytical versus Numerical Results
We give an analytical calculation of solar neutrino masses and mixing at
one-loop order within bilinear R-parity breaking supersymmetry, and compare our
results to the exact numerical calculation. Our method is based on a systematic
perturbative expansion of R-parity violating vertices to leading order. We find
in general quite good agreement between approximate and full numerical
calculation, but the approximate expressions are much simpler to implement. Our
formalism works especially well for the case of the large mixing angle MSW
solution (LMA-MSW), now strongly favoured by the recent KamLAND reactor
neutrino data.Comment: 34 pages, 14 ps figs, some clarifying comments adde
Exploring flavor structure of supersymmetry breaking from rare B decays and unitarity triangle
We study effects of supersymmetric particles in various rare B decay
processes as well as in the unitarity triangle analysis. We consider three
different supersymmetric models, the minimal supergravity, SU(5) SUSY GUT with
right-handed neutrinos, and the minimal supersymmetric standard model with U(2)
flavor symmetry. In the SU(5) SUSY GUT with right-handed neutrinos, we consider
two cases of the mass matrix of the right-handed neutrinos. We calculate direct
and mixing-induced CP asymmetries in the b to s gamma decay and CP asymmetry in
B_d to phi K_S as well as the B_s--anti-B_s mixing amplitude for the unitarity
triangle analysis in these models. We show that large deviations are possible
for the SU(5) SUSY GUT and the U(2) model. The pattern and correlations of
deviations from the standard model will be useful to discriminate the different
SUSY models in future B experiments.Comment: revtex4, 36 pages, 10 figure
- …
