50 research outputs found
Commentary: Coding of serial order in verbal, visual and spatial working memory
Published: 21 November 201
Dorsal anterior cingulate-brainstem ensemble as a reinforcement meta-learner
Published: August 24, 2018Optimal decision-making is based on integrating information from several dimensions of decisional space (e.g., reward expectation, cost estimation, effort exertion). Despite considerable empirical and theoretical efforts, the computational and neural bases of such multidimensional integration have remained largely elusive. Here we propose that the current theoretical stalemate may be broken by considering the computational properties of a cortical-subcortical circuit involving the dorsal anterior cingulate cortex (dACC) and the brainstem neuromodulatory nuclei: ventral tegmental area (VTA) and locus coeruleus (LC). From this perspective, the dACC optimizes decisions about stimuli and actions, and using the same computational machinery, it also modulates cortical functions (meta-learning), via neuromodulatory control (VTA and LC). We implemented this theory in a novel neuro-computational model–the Reinforcement Meta Learner (RML). We outline how the RML captures critical empirical findings from an unprecedented range of theoretical domains, and parsimoniously integrates various previous proposals on dACC functioning.MS was funded from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 795919. EV was funded from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 705630. EA was supported by Research Foundation Flanders under contract number 12C4715N. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Cognitive Processing in New and Practiced Discrete Keying Sequences
This study addresses the role of cognitive control in the initiation and execution of familiar and unfamiliar movement sequences. To become familiar with two movement sequences participants first practiced two discrete key press sequences by responding to two fixed series of 6-key specific stimuli. In the ensuing test phase they executed these two familiar and also two unfamiliar keying sequences while there was a two-third chance a tone was presented together with one randomly selected key specific stimulus in each sequence. In the counting condition of the test phase participants counted the low pitched (i.e., target) tones. By and large the results support the dual processor model in which the prime role of the cognitive processor shifts from executing to initiating sequences while the gradual development of motor chunks allows a motor processor to execute the sequences. Yet, the results extend this simple model by suggesting that with little practice sequence execution is based also on some non-cognitive (perhaps associative) learning mechanism and, for some participants, on the use of explicit sequence knowledge. Also, after extensive practice the cognitive processor appears to still contribute to slower responses. The occurrence of long interkey intervals was replicated suggesting that fixed 6-key sequences include several motor chunks. Yet, no indication was found that the cognitive processor is responsible for concatenating these chunks
Does incidental sequence learning allow us to better manage upcoming conflicting events?
Published online: 13 June 2019Recent proposals emphasize the role of learning in empirical markers of conflict adaptation. Some of these proposals are rooted in the assumption that contingency learning works not only on stimulus–response events but also on covert processes such as selective attention. In the present study, we explored how these learning processes may apply to trial-to-trial modulations of selective attention, mirroring the sequential nature of congruency sequence effects. Two groups of participants performed a four-choice Stroop task in which the color to which they responded on each trial acted as a probabilistic predictor either of the external response to be emitted on the next trial, or the congruency level (and therefore control demands) on the next trial. The results showed clear effects of sequence learning for external responses, but no evidence of learning about sequential stimulus–conflict associations. The implications of these results are discussed in relation to other learning-based phenomena of conflict adaptation and suggest that learning of stimulus–control associations is strongly constrained by event boundaries.The present research was funded by the Spanish Ministerio de Economía y Competitividad with a research Grant to Luis Jiménez (PSI2015-70990-P)
Redundant sensory information does not enhance sequence learning in the serial reaction time task
In daily life we encounter multiple sources of sensory information at any given
moment. Unknown is whether such sensory redundancy in some way affects implicit
learning of a sequence of events. In the current paper we explored this issue in
a serial reaction time task. Our results indicate that redundant sensory
information does not enhance sequence learning when all sensory information is
presented at the same location (responding to the position and/or color of the
stimuli; Experiment 1), even when the distinct sensory sources provide more or
less similar baseline response latencies (responding to the shape and/or color
of the stimuli; Experiment 2). These findings support the claim that sequence
learning does not (necessarily) benefit from sensory redundancy. Moreover,
transfer was observed between various sets of stimuli, indicating that learning
was predominantly response-based
Sensory information in perceptual-motor sequence learning: visual and/or tactile stimuli
Sequence learning in serial reaction time (SRT) tasks has been investigated mostly with unimodal stimulus presentation. This approach disregards the possibility that sequence acquisition may be guided by multiple sources of sensory information simultaneously. In the current study we trained participants in a SRT task with visual only, tactile only, or bimodal (visual and tactile) stimulus presentation. Sequence performance for the bimodal and visual only training groups was similar, while both performed better than the tactile only training group. In a subsequent transfer phase, participants from all three training groups were tested in conditions with visual, tactile, and bimodal stimulus presentation. Sequence performance between the visual only and bimodal training groups again was highly similar across these identical stimulus conditions, indicating that the addition of tactile stimuli did not benefit the bimodal training group. Additionally, comparing across identical stimulus conditions in the transfer phase showed that the lesser sequence performance from the tactile only group during training probably did not reflect a difference in sequence learning but rather just a difference in expression of the sequence knowledge
Context dependent learning in the serial RT task
This study investigated the development of contextual dependencies for sequential perceptual-motor learning on static features in the learning environment. In three experiments we assessed the effect of manipulating task irrelevant static context features in a serial reaction-time task. Experiment 1 demonstrated impaired performance after simultaneously changing display color, placeholder shape, and placeholder location. Experiment 2 showed that this effect was mainly caused by changing placeholder shape. Finally, Experiment 3 indicated that changing context affected both the application of sequence knowledge and the selection of individual responses. It is proposed either that incidental stimulus features are integrated with a global sequence representation, or that the changed context causes participants to strategically inhibit sequence skills
Motor skill learning in the middle-aged: limited development of motor chunks and explicit sequence knowledge
The present study examined whether middle-aged participants, like young adults, learn movement patterns by preparing and executing integrated sequence representations (i.e., motor chunks) that eliminate the need for external guidance of individual movements. Twenty-four middle-aged participants (aged 55–62) practiced two fixed key press sequences, one including three and one including six key presses in the discrete sequence production task. Their performance was compared with that of 24 young adults (aged 18–28). In the middle-aged participants motor chunks as well as explicit sequence knowledge appeared to be less developed than in the young adults. This held especially with respect to the unstructured 6-key sequences in which most middle-aged did not develop independence of the key-specific stimuli and learning seems to have been based on associative learning. These results are in line with the notion that sequence learning involves several mechanisms and that aging affects the relative contribution of these mechanisms
Endogenous orienting modulates the Simon effect: critical factors in experimental design
Responses are faster when the side of stimulus and response correspond than when they do not correspond, even if stimulus location is irrelevant to the task at hand: the correspondence, spatial compatibility effect, or Simon effect. Generally, it is assumed that an automatically generated spatial code is responsible for this effect, but the precise mechanism underlying the formation of this code is still under dispute. Two major alternatives have been proposed: the referential-coding account, which can be subdivided into a static version and an attention-centered version, and the attention-shift account. These accounts hold clear-cut predictions for attentional cuing experiments. The former would assume a Simon effect irrespective of attentional cuing in its static version, whereas the attention-centered version of the referential-coding account and the attention-shift account would predict a decreased Simon effect on validly as opposed to invalidly cued trials. However, results from previous studies are equivocal to the effects of attentional cuing on the Simon effect. We argue here that attentional cueing reliably modulates the Simon effect if some crucial experimental conditions, mostly relevant for optimizing attentional allocation, are met. Furthermore, we propose that the Simon effect may be better understood within the perspective of supra-modal spatial attention, thereby providing an explanation for observed discrepancies in the literature